精英家教网 > 高中数学 > 题目详情
求f(x)=x+
b
x
(b>0)的单调区间.
考点:函数的单调性及单调区间
专题:函数的性质及应用
分析:先求出函数的定义域,再利用求导公式求出函数的导数,由y′>0和y′<0分别解出函数的递增区间和递减区间.
解答: 解:∵y=x+
b
x
(b>0),x≠0,
∴y′=1-
b
x2
=
x2-b
x2

令y′>0,解得x>
b
或x<-
b

令y′<0,解得-
b
<x<0或0<x<
b

故y=x+
b
x
(a>0)在(-∞,-
b
],(
b
,+∞)上是增函数,在(0,
b
],(-
b
,0)上是减函数.
点评:本题综合考查了利用导数求函数的单调性和不等式的解法,注意定义域要优先考虑.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由动点P(x,y)向圆O:x2+y2=1引两条切线,切点为A、B,若
PA
PB
=
3
2
,则动点P的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足|x-1|+|y-a|≤1,若2x+y的最大值是5,则实数a的值是(  )
A、2B、1C、0D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

两个圆锥有公共的底面,且底面圆周及两个顶点都在同一个球面上,如果这两个圆锥的体积比为1:3,且圆锥的底面积为6π,则这个球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,
(1)已知a1+a4+a7=15,a3+a6+a9=3,求a5
(2)已知a3+a11=10,求a6+a7+a8
(3)已知a4+a5+a6+a7=56,a4a7=187,求a14及公差d.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=8,a4=2.
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…|an|,求Sn
(3)设bn=
1
n(12-an)
(n∈N*),Tn=b1+b2+…+bn(n∈N*),求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC外一点S,且SA⊥平面ABC,∠ABC=90°,AM⊥SB,AN⊥SC
(1)求证:SC⊥平面AMN;
(2)如果SA=AC=2,∠BSC=θ,当tanθ取何值时,△AMN的面积最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABC,AB⊥BC,AD⊥PB,AE⊥PC,AP=
2
,AB=BC=1.
(1)求证:PC⊥平面ADE;
(2)求AB与平面ADE所成的角;
(3)Q为线段AC上的点,试确定点Q的位置,使得BQ∥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义表示不超过x的最大整数[x],记{x}=x-[x],二次函数y=-x2+mx-2与函数y={-x}在(-1,0]上有两个不同的交点,则m的取值范围是(  )
A、(-
5
2
,-
2
-1)
B、(
4
3
,+∞)
C、∅
D、以上均不正确

查看答案和解析>>

同步练习册答案