精英家教网 > 高中数学 > 题目详情
1.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,△ABC是等边三角形,D是AC的中点.
(1)证明:平面C1BD⊥平面A1ACC1
(2)若E为线段AB1上的动点,证明:三棱锥E-BC1D的体积为定值.

分析 (1)证明平面C1BD⊥平面A1ACC1,可利用面面垂直的判断,证明平面C1BD经过平面A1ACC1的一条垂线,由等腰三角形中线性质得BD垂直AC,再由已知AA1⊥底面ABC,得BD垂直AA1,然后利用线面垂直的判断得BD⊥平面A1ACC1,则结论得到证明;
(2)证明AB1∥平面E-BC1D,说明线段AB1上的动点E到底面BC1D的距离为定值,则结论得证.

解答 证明:(1)如图,
∵△ABC是等边三角形,D是AC的中点,∴BD垂直AC,
∵AA1⊥底面ABC,∴BD垂直AA1
又AA1∩AC=A,∴BD⊥平面A1ACC1
∵BD?平面C1BD,
∴平面C1BD⊥平面A1ACC1
(2)连接B1C,交BC1于O,
连接OD,则OD∥AB1
∴AB1∥平面BC1D,
又E为线段AB1上的动点,∴E到平面BC1D的距离相等,
∴三棱锥E-BC1D的体积为定值.

点评 本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.求由曲线y=x+$\frac{1}{x}$,直线x=1,直线x=2和x轴所围成的平面图形的面积.(画图)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.正奇数按下表规律排成5列.
第1列第2列第3列第4列第5列
第1行1357
第2行1513119
第3行17192123
第4行31292725
则第2017在第252行,第2列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+bx+c在x1处取得极大值,在x2处取得极小值,满足x1∈(-1,0),x2∈(0,1),则$\frac{a+2b+4}{a+2}$的取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin(ωx+$\frac{π}{3}$)+cos(ωx+$\frac{π}{6}$)(其中ω>0)的图象上相邻的最低点的距离为4.
(1)求函数f(x)的单调递减区间;
(2)若函数f(x)图象上的两点A、B的横坐标分别为-1,2,0为坐标原点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点($\sqrt{3}$,$\frac{1}{2}$),离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求C的方程;
(Ⅱ)设O为坐标原点,直线l与C相切于点T,且交两坐标轴的正半轴于A,B两点,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+(a-4)x+3-a.
(1)若f(x)在区间[0,1]上不单调,求a的取值范围;
(2)若对于任意的a∈(0,4),存在x0∈[0,2],使得|f(x0)|≥t,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在三棱锥的四个面中,任两个面的位置关系是(  )
A.相交B.平行C.异面D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和Sn

查看答案和解析>>

同步练习册答案