精英家教网 > 高中数学 > 题目详情
已知:集合A={x|x2-2x-3<0},B={x|
1
2
<2x-1<8},C={x|2x2+mx-m2<0}(m∈R).
(1)求:A∪B;
(2)若(A∪B)⊆C,求:实数m的取值范围.
考点:集合的包含关系判断及应用,并集及其运算
专题:不等式的解法及应用,集合
分析:(1)解二次不等式和指数不等式求出A,B,进而根据集合并集的定义可得A∪B;
(2)根据(A∪B)⊆C,构造关于m的不等式,解不等式可得答案.
解答: 解:(1)∵集合A={x|x2-2x-3<0}=(-1,3),B={x|
1
2
<2x-1<8}=(0,4),
∴A∪B=(-1,4),
(2)∵C={x|2x2+mx-m2<0}={x|((2x-m)(x+m)<0},
若(A∪B)⊆C,
m>0
-m≤-1
m
2
≥4
m<0
-m≥4
m
2
≤-1

解得:m≤-4,或m≥8
点评:本题考查的知识点是集合包含关系判断及应用,并集及其运算,是集合运算与包含关系的综合应用,难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某种商品在50个不同地区的零售价格全部介于13元与18元之间,将各地价格按如下方式分成五组:第一组[13,14);第二组[14,15),…,第五组[17,18].如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求价格在[16,17)内的地区数,并估计该商品价格的中位数(精确到0.1);
(Ⅱ)设m、n表示某两个地区的零售价格,且已知m,n∈[13,14)∪[17,18],求事件“|m-n|>1”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

32
的近似值(精确度0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lg(1-x)+lg(1+x)的定义域为A,函数f(x)=lg(x-1)(x∈[2,11])的值域为B.求:A,B,(∁RA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式
(1)(x2-x)2-4(x2-x)-12<0
(2)(x-2)(ax-2)>0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

有5名男生,4名女生排成一排,
(1)从中选出3人排成一排,有多少种排法?
(2)若男生甲不站排头,女生乙不站排尾,则有多少种不同的排法?
(3)要求女生必须站在一起,有多少种不同的排法?
(4)若4名女生互不相邻,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:23+lo
g
 
2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥A-BCD中,E,F分别是AB,CD的中点,试比较EF和
1
2
(AD+BC)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ln(x2+ax+1)的值域为R,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案