精英家教网 > 高中数学 > 题目详情
11.双曲线C:y2-x2=m(m>0)的渐近线方程为y=±x.

分析 将双曲线的方程化为标准方程,由双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a,b>0)的渐近线方程为y=±$\frac{a}{b}$x,假设即可得到所求方程.

解答 解:双曲线C:y2-x2=m(m>0)即为:
$\frac{{y}^{2}}{{m}^{2}}$-$\frac{{x}^{2}}{{m}^{2}}$=1,
由双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a,b>0)的渐近线方程为:
y=±$\frac{a}{b}$x,可得所求渐近线方程为y=±x.
故答案为:y=±x.

点评 本题考查双曲线的渐近线方程的求法,注意运用双曲线的方程和渐近线方程的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.△ABC中D是AB的中点,O是三角形的重心,则$\overrightarrow{DO}$=$-\frac{1}{6}$($\overrightarrow{CA}$+$\overrightarrow{CB}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点到焦点的距离为2,离心率为$\frac{\sqrt{3}}{2}$.
(1)求a,b的值,
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为1的直线交椭圆于A,B两点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设F1、F2是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+${\frac{{y}^{2}}{{b}^{2}}}^{\;}$=1(a>b>0)的左右焦点,P为直线x=$\frac{5a}{4}$上一点,△F2PF1是底角为30°的等腰三角形,则椭圆C的离心率为(  )
A.$\frac{5}{8}$B.$\frac{\sqrt{10}}{4}$C.$\frac{3}{4}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,AB是圆O的直径,C,F为圆O上的点,CA是∠BAF的角平分线,CD与圆O切于点C,且交AF的延长线于点D,CM⊥AB,垂足为点M.
(1)求证:DF=BM;
(2)若圆O的半径为1,∠BAC=60°,试求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为$\frac{\sqrt{5}}{10}$.则E的离心率e=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知椭圆C的中心在原点O,左焦点为F1(-1,0),左顶点为A,且F1为AO的中点.
(1)求椭圆C的方程;
(2)若椭圆C1方程为:$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1(m>n>0)$,椭圆C2方程为:$\frac{x^2}{m^2}+\frac{y^2}{n^2}=λ(λ>0,且λ≠1)$,则称椭圆C2是椭圆C1的λ倍相似椭圆.已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M,N,试求弦长|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点A(2,0),离心率$e=\frac{1}{2}$,斜率为k(0<k≤1)直线l过点M(0,2),与椭圆C交于G,H两点(G在M,H之间),与x轴交于点B.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)P为x轴上不同于点B的一点,Q为线段GH的中点,设△HPG的面积为S1,△BPQ面积为S2,求$\frac{S_1}{S_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=2msinx-2cos2x+$\frac{1}{2}$m2-4m+3,m∈(-∞,2]的最小值为m2+1,求函数f(x)的最大值.

查看答案和解析>>

同步练习册答案