精英家教网 > 高中数学 > 题目详情
2.如图,四棱锥P-ABCD的底面ABCD是平行四边形,PA⊥底面ABCD,∠PCD=90°,PA=AB=AC=2
(I)求证:AC⊥CD;
(Ⅱ)点E在棱PC的中点,求点B到平面EAD的距离.

分析 (I)证明CD⊥平面PAC,可得AC⊥CD;
(Ⅱ)作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平面EAD.因为BC∥AD,所以点B与点C到平面EAD的距离相等,CF即为点C到平面EAD的距离,利用等面积可得结论.

解答 (Ⅰ)证明:因为PA⊥底面ABCD,所以PA⊥CD,
因为∠PCD=90°,所以PC⊥CD,
所以CD⊥平面PAC,
所以CD⊥AC.…(4分)
(Ⅱ)解:因为PA=AB=AC=2,E为PC的中点,
所以AE⊥PC,AE=$\sqrt{2}$.
由(Ⅰ)知AE⊥CD,所以AE⊥平面PCD.
作CF⊥DE,交DE于点F,则CF⊥AE,则CF⊥平面EAD.
因为BC∥AD,所以点B与点C到平面EAD的距离相等,
CF即为点C到平面EAD的距离.…(8分)
在Rt△ECD中,CF=$\frac{CE×CD}{DE}$=$\frac{2\sqrt{3}}{3}$.
所以,点B到平面EAD的距离为$\frac{2\sqrt{3}}{3}$.…(12分)

点评 本题考查线面垂直的性质与判定,考查点B到平面EAD的距离,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x-a(x+1)ln(x+1),(a≥0).
(1)如果a=1,求函数f(x)的单调递减区间;
(2)若x∈[0,+∞)时,恒有f(x)≤0,求实数a的取值范围;
(3)证明:当m>n>0时,(1+m)n<(1+n)m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在多面体ABCDEF中,正方形ADEF与梯形ABCD所在平面互相垂直,已知AB∥CD,AD⊥CD,AB=AD=1,CD=2.
(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求点C到平面BDF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知点C是圆心为O半径为1的半圆弧上从点A数起的第一个三等分点,AB是直径,CD=1,直线CD⊥平面ABC.
(1)证明:AC⊥BD;
(2)在DB上是否存在一点M,使得OM∥平面DAC,若存在,请确定点M的位置,并证明之;若不存在,请说明理由;
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+a}{x}$(a∈R),f′(1)=0.
(1)求实数a的值;
(2)证明当x≥1时,f(x)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx-$\frac{1}{2}a{x^2}$(a∈R).
(Ⅰ)当a=0时,求f(x)的最小值;
(Ⅱ)对于区间(1,2)内的任意两个不相等的实数x1,x2,不等式$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$>1恒成立,求实数a的取值范围;
(Ⅲ)设Sn=$\frac{ln2}{2^3}+\frac{ln3}{3^3}+\frac{ln4}{4^3}+…+\frac{lnn}{n^3}$,试比较Sn与$\frac{1}{e}$的大小.(其中n>1,n∈N*,e=2.71828…是自然对数的底数.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数 f(x)=ax3+bx2+cx在R上是奇函数,且 f(-1)=-2,f(2)=10.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)说明 f(x)在R上的单调性(不需要证明);
(Ⅲ)若关于x的不等式 f(x2-9)+f(kx+3k)<0在 x∈(0,1)上恒成立,求实数k是的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆的左右焦点为F1、F2,点A(2,$\sqrt{2}$)在椭圆上,且AF2与x轴垂直,求过A作直线与椭圆交于另外一点B,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ln(x+1)+ax2-2x+1;
(1)求函数曲线在x=0处的切线方程;
(2)函数f(x)不单调,求参数a的范围;
(3)曲线C:y=f(x)与(1)中的切线只有一个公共点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案