精英家教网 > 高中数学 > 题目详情
10.某工厂的产值第二年比第一年的增长率是P1,第三年比第二年的增长率是P2,而这两年的平均增长率为P,在P1+P2为定值的情况下,P的最大值为(  )
A.$\frac{{{P_1}+{P_2}}}{2}$B.$\sqrt{{P_1}{P_2}}$C.$\frac{{{P_1}{P_2}}}{2}$D.$\sqrt{(1+{P_1})(1+{P_2})}$

分析 先根据题意列出方程,再由基本不等式可得出P和$\frac{{P}_{1}+{P}_{2}}{2}$的大小关系.

解答 解:由题意知:(1+P)2=(1+P1)(1+P2),
∴1+P=$\sqrt{(1+{P}_{1})(1+{P}_{2})}$≤$\frac{1+{P}_{1}+1+{P}_{2}}{2}$=1+$\frac{{P}_{1}+{P}_{2}}{2}$,
∴P≤$\frac{{P}_{1}+{P}_{2}}{2}$,∴在P1+P2为定值的情况下,P的最大值为$\frac{{P}_{1}+{P}_{2}}{2}$;当且仅当P1=P2时等号成立;
故选A.

点评 本题考查基本不等式在实际生活中的应用,根据题意列出关系式是解决问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知tanθ=4,则$\frac{sinθ+cosθ}{sinθ}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设离散型随机变量X的概率分布列如下:
X1234
P$\frac{2}{7}$$\frac{1}{7}$$\frac{5}{14}$p
则p的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{3}{14}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若将函数y=sin2x的图象向右平移$\frac{π}{12}$个单位长度,则平移后的图象的对称轴方程为(  )
A.x=$\frac{kπ}{2}$$-\frac{7π}{12}$(k∈Z)B.x=$\frac{kπ}{2}$$+\frac{7π}{12}$(k∈Z)C.x=$\frac{kπ}{2}$$-\frac{π}{3}$(k∈Z)D.x=$\frac{kπ}{2}$$+\frac{π}{3}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在△ABC中,点P在BC边上,∠PAC=60°,PC=2,AP+AC=4
(Ⅰ)求边AC的长
(Ⅱ)若△APB的面积是$\frac{3\sqrt{3}}{2}$,求sin∠BAP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知 $cos({\frac{π}{2}-α})=\frac{2}{3}$,则sin(π+α)=(  )
A.$-\frac{{\sqrt{5}}}{3}$B.-$\frac{2}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{1}{3}$x3+a与函数g(x)=$\frac{1}{2}$x2-2x的图象上恰有三对关于y轴对称的点,则实数a的取值范围是(  )
A.(-$\frac{10}{3}$,$\frac{7}{6}$)B.($\frac{7}{6}$,$\frac{10}{3}$)C.(-$\frac{7}{6}$,$\frac{10}{3}$)D.(-$\frac{10}{3}$,-$\frac{7}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|x-2|+|x-a|.
(Ⅰ)若a=-2,解不等式f(x)≥5;
(Ⅱ)如果当x∈R时,f(x)≥3-a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知半径为1的球O内切于正四面体A-BCD,线段MN是球O的一条动直径(M.N是直径的两端点),点P是正四面体A-BCD的表面上的一个动点,则|${\overrightarrow{PM}$+$\overrightarrow{PN}}$|的取值范围是[2,6].

查看答案和解析>>

同步练习册答案