精英家教网 > 高中数学 > 题目详情
13.若正数m,n满足m+n+3=mn,不等式(m+n)x2+2x+mn-13≥0恒成立,则实数x的取值范围是(  )
A.$({-∞,-1}]∪[{\frac{2}{3},+∞})$B.$({-∞,-1}]∪[{\frac{1}{2},+∞})$C.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{3},+∞})$D.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{6},+∞})$

分析 令m+n=a,则mn=a+3,即m、n是方程x2-ax+a+3=0的两个正实根,解得a的范围,不等式(m+n)x2+2x+mn-13≥0恒成立?不等式ax2+2x+a-10≥0在a≥6时恒成立.即函数f(a)=a(x2+1)+2x-10≥0在a∈[6,+∞)恒成立.

解答 解:令m+n=a,则mn=a+3,
故m、n是方程x2-ax+a+3=0的两个正实根,∴$\left\{\begin{array}{l}{△={a}^{2}-4a-13≥0}\\{a>0}\\{a+3>0}\end{array}\right.$,解得a≥6,
不等式(m+n)x2+2x+mn-13≥0恒成立?不等式ax2+2x+a-10≥0在a≥6时恒成立.
即函数f(a)=a(x2+1)+2x-10≥0在a∈[6,+∞)恒成立.
f(6)=6(x2+1)+2x-10≥0⇒x≥$\frac{2}{3}$或x≤-1.
故选:A.

点评 本题考查了函数恒成立问题,转化思想是解题的关键,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图求由y2=4x与直线y=2x-4所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=sin(x+17°)-sin(x+257°)的最大值为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设Sn为数列{an}的前n项和,且Sn=2an-n+1(n∈N*),bn=an+1.
(1)求数列{bn}的通项公式;
(2)求数列{nbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.关于x的不等式组$\left\{{\begin{array}{l}{{x^2}-x-2>0}\\{2{x^2}+(2k+5)x+5k<0}\end{array}}\right.$的解集为A,若集合A中有且仅有一个整数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,底面ABCD是平行四边形,AB=BC=2a,AC=2$\sqrt{3}$a,E的PA的中点.
(Ⅰ)求证:平面BED⊥平面PAC;
(Ⅱ)求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x-1|+|x-m|(m>1),若f(x)>4的解集是{x|x<0或x>4}.
(Ⅰ)求m的值;
(Ⅱ)若关于x的不等式f(x)<a2+a-4有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是定义在R上的可导函数,其导函数为f′(x),若对任意实数x有f(x)>f′(x),且y=f(x)-1的图象过原点,则不等式$\frac{f(x)}{{e}^{x}}$<1的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间中,下列命题正确的是(  )
A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行
C.垂直于同一直线的两条直线平行D.垂直于同一平面的两条直线平行

查看答案和解析>>

同步练习册答案