精英家教网 > 高中数学 > 题目详情
若对任意的正数x使2x(x-a)≥1成立,则a的取值范围是
 
考点:函数恒成立问题
专题:函数的性质及应用
分析:将不等式转化为a≤x-2-x,在x>0上恒成立,然后利用函数的单调性求出函数的取值范围即可得到结论.
解答: 解:不等式2x(x-a)≥1等价为x-a≥2-x
即a≤x-2-x,在x>0上恒成立,
设f(x)=x-2-x=x-(
1
2
x在x≥0时为增函数,
∴f(x)>f(0)=-1,
即x-2-x>-1,
∴要使a≤x-2-x,在x>0上恒成立,
则a≤-1,
故a的取值范围是(-∞,-1].
故答案为:(-∞,-1].
点评:本题主要考查不等式恒成立问题,将不等式进行转化,利用参数分离法是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在空间直角坐标系中,已知点A(1,0,-2),B(1,-3,1)),点 M在y轴上,且|MA|=|MB|,则M的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④f(x)=
ln|x|
 
 
 
,x≠0
0
 
 
 
 
 
 
,x=0
.以上函数是“H函数”的所有序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设(1+2i)
.
z
=3-4i(i为虚数单位),则|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2(|x-1|+|x-2|-3)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

现有三个小球全部随机放入三个盒子中,设随机变量ξ为三个盒子中含球最多的盒子里的球数,则ξ的数学期望Eξ为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C的参数方程为
x=
t
y=2t
(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立极坐标系.直线l的极坐标方程为ρcosθ-ρsinθ+1=0.则l与C的交点直角坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},且函数y=ax3+mx2+x+
c
2
在区间(
1
2
,1)
上不是单调函数,则实数m的取值范围为(  )
A、(-2,-
3
B、[-2,-
3
]
C、(-∞,-2)∪(
3
,+∞)
D、(-∞,-2]∪[-
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的增函数,且对于任意的x都有f(2-x)+f(2+x)=0恒成立.如果实数m,n满足不等式
n≥4
f(m2-6m+25)+f(n2-8n)≤0
,那么m2+n2+2m-2n的取值范围是(  )
A、[11,47]
B、[11,39]
C、[7,47]
D、[7,11]

查看答案和解析>>

同步练习册答案