精英家教网 > 高中数学 > 题目详情
设(1+2i)
.
z
=3-4i(i为虚数单位),则|z|=
 
考点:复数代数形式的混合运算
专题:数系的扩充和复数
分析:复数方程两边直接求模,即可得到复数z的模.
解答: 解:∵(1+2i)
.
z
=3-4i,
∴|1+2i||
.
z
|=|3-4i|=5,
|z|=|
.
z
|

5
|z|=5,
∴|z|=
5

故答案为:
5
点评:本题是基础题,考查复数的模的求法,复数方程的灵活运应,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2,g(x)=2x-m,若对?x1∈[-1,3],?x2∈[0,2],使f(x1)≥g(x2),则m的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于任意x∈(0,3e]恒有(x-a)2lnx≤4e2成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且f(1)>1,f(2)=
2m-3
m+1
,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3
sinxcosx+cos2x-
1
2
的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知“c,d,e,f”是从1,3,4,5,7中取出4个元素的一个排列.设x是实数,若“(x-2)(x-6)<0”可推出“(x-c)(x-d)<0或(x-e)(x-f)<0”,则满足条件的排列“c,d,e,f”共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意的正数x使2x(x-a)≥1成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(x+1)-x2,若在区间(0,1)内任取两个不同实数m,n,不等式
f(m+1)-f(n+1)
m-n
<1恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=sin(ωx+
π
6
)(ω>0)的最小正周期为π,则ω的值为(  )
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

同步练习册答案