精英家教网 > 高中数学 > 题目详情
已知命题P:ln(x-2)<0,Q:(x-a)(x-3a<0),(a>0),若命题P是 Q 的充分不必要条件,求a的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的性质求出P,Q对应的等价条件,利用充分条件和必要条件的定义建立条件关系即可得到结论.
解答: 解:由ln(x-2)<0,得0<x-2<1,即2<x<3,即P:2<x<3,
由(x-a)•(x-3a)<0,得a<x<3a,即Q:a<x<3a,
若P是 Q 的充分不必要条件,
a≤2
3a≥3
,即
a≤2
a≥1

则1≤a≤2,
即实数a的取值范围是[1,2].
点评:本题主要考查充分条件和必要条件的应用,求出命题的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过曲线C上任意一点P作直线x=-2p(p>0)的垂线,垂足为M,且OP⊥OM.
(1)求曲线C的方程;
(2)设A、B是曲线C上两个不同点,直线OA和OB的倾斜角分别为α和β,当α,β变化且α+β为定值θ(0<θ<π)时,证明直线AB恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.
(1)求证:AC⊥BB1
(2)若AB=AC=A1B=2,在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
x
x
+x
y
xy-y2
-
x+
xy
+y
x
x
-y
y

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠BAD=90°,AB=AD=1,PD=
3
,CD=2.
(Ⅰ)求证:BC⊥平面PBD;
(Ⅱ)点E是线段PC上的一个动点,二面角E-BA-D的大小是否可以为30°?若可以,求出线段PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=
1
x
,(0<x<1)
x,(x≥1)
的图象,并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an+1=
an-6
an+6
,a1=2,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,直线l分别经过椭圆长轴和短轴的一个顶点,且与圆C:x2+y2=
2
3
相切,
(Ⅰ)求椭圆E的方程;
(Ⅱ)P为圆C上任意一点,以P为切点作圆C的切线与椭圆E相交于点M,N,求线段|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF1的中点在y轴上,若∠PF1F2=30°,则椭圆C的离心率为
 

查看答案和解析>>

同步练习册答案