精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,过F1作倾斜角为30°的直线与椭圆的一个交点为P,且PF2⊥x轴,则此椭圆的离心率为
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据∠PF1F2=30°,|F1F2|=2c,推断出|PF1|=2|PF2|,进而根据椭圆的定义分别表示出|PF2|和|PF1|,进而根据勾股定理建立等式求得a和c的关系,则椭圆离心率可得.
解答: 解:在Rt△PF2F1中,∠PF1F2=30°,|F1F2|=2c,|PF1|=2|PF2|,
根据椭圆的定义得|PF2|=
2
3
a,|PF1|=
4
3
a,
又|PF1|2-|PF2|2=|F1F2|2,即
16
9
a2-
4
9
a2=4c2
∴e=
c
a
=
3
3

故答案为:
3
3
点评:本题主要考查了直线与圆锥曲线的综合问题.解题的关键是灵活利用了椭圆的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司准备进行两种组合投资,稳健型组合投资是由每份金融投资20万元,房地产投资30万元组成;进取型组合投资是由每份金融投资40万元,房地产投资30万元组成.已知每份稳健型组合投资每年可获利10万元,每份进取型组合投资每年可获利15万元.若可作投资用的资金中,金融投资不超过160万元,房地产投资不超过180万元,求这两种组合投资应注入多少份,才能使一年获利总额最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,AB=BC=2,D,E分别是AB,AC的中点,将如图2所示中△ADE沿线段DE折起到△ADE,使平面ADE⊥平面DBCE.

(Ⅰ)当M是DE的中点时,证明BM⊥平面ACD;
(Ⅱ)设BE与DC相交于点N,求二面角B-AN-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
(cos2x-sin2x)-2cos2(x+
π
4
)+1的定义域为[0,
π
2
].
(1)求f(x)的最小值.
(2)△ABC中,A=45°,b=3
2
,边a的长为6,求角B大小及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程|x2-4x+b|=c(b,c>0)恰有三个不同实根x1,x2,x3,且x1+x2+x3=6,则b+c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

0+2+4+6+…+100=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
32+
2
7
=2
3
2
7
33+
3
26
=3
3
3
26
34+
4
63
=4
3
4
63
…,
32013+
m
n
=2013
3
m
n
,则
n+1
m2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx,则y=f(x)与g(x)=lgx的图象的交点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式 
x2-8x+20
mx2-mx-1
<0对一切x恒成立,则实数m的范围是
 

查看答案和解析>>

同步练习册答案