精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
设圆过点P(0,2), 且在轴上截得的弦RG的长为4.

(1)求圆心的轨迹E的方程;
(2)过(0,1),作轨迹的两条互相垂直的弦,设的中点分别为,试判断直线是否过定点?并说明理由.

解:(1)设圆心的坐标为,如图过圆心轴于H,

HRG的中点,在中,…3分
 ∴  
  …………………6分
(2)设
直线AB的方程为)则-----①---②
由①-②得,∴,………………9分
∵点在直线上,∴
∴点M的坐标为.………………10分
同理可得:, ,
∴点的坐标为.………………11分
直线的斜率为,其方程为
,整理得,………………13分
显然,不论为何值,点均满足方程,
∴直线恒过定点.……………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题12分)
已知中心在原点,一焦点为F(0,)的椭圆被直线截得的弦的中点横坐标为,求此椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分
的内切圆与三边的切点分别为,已知,内切圆圆心,设点的轨迹为.

(1)求的方程;
(2)过点的动直线交曲线于不同的两点(点轴的上方),问在轴上是否存在一定点不与重合),使恒成立,若存在,试求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知动圆P过点并且与圆相外切,动圆圆心P的轨迹为W,过点N的直线与轨迹W交于A、B两点。
(Ⅰ)求轨迹W的方程;   (Ⅱ)若,求直线的方程;
(Ⅲ)对于的任意一确定的位置,在直线上是否存在一点Q,使得,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
分别是椭圆的左、右焦点,过斜率为1的直线相交于两点,且成等差数列。
(Ⅰ)求的离心率;     
(Ⅱ)设点满足,求的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列四个关于圆锥曲线的命题:
①已知M(-2,0)、N(2,0),|PM|+|PN|=3,则动点P的轨迹是一条线段;
②从双曲线的一个焦点到一条渐近线的距离等于它的虚半轴长;
③双曲线与椭圆有共同的准线;
④关于x的方程x2-mx+1=0(m>2)的两根可分别作为椭圆和双曲线的离心率.
其中正确的命题是        .(填上你认为正确的所有命题序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为.
(1)求椭圆C的方程;
(2)设直线l与椭圆c交于A、B两点,坐标原点O到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是                                                 (    )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

14.已知线段AB的端点B的坐标为(4,0),端点A在圆x2 + y2 = 1上运动,则线段AB的中点的轨迹方程为           

查看答案和解析>>

同步练习册答案