精英家教网 > 高中数学 > 题目详情
3.阅读如图所示的程序框图,运行相应的程序,若输入m=168,n=72,则输出m的值为(  )
A.72B.24C.12D.6

分析 求出m除以n的余数,利用辗转相除法,将n的值赋给m,将余数赋给n,
进行迭代,一直到余数为零时输出m的值.

解答 解:当m=168,n=72,m除以n的余数是24,
此时m=72,n=24,m除以n的余数是0,
此时m=24,n=0,r=0;
退出循环程序,输出结果为m=24.
故选:B.

点评 本题考查了利用循环结构表示辗转相除法球两个整数的最大公约数的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知复数z=($\frac{1+i}{\sqrt{2}}$)2(其中i为虚数单位),则$\overline{z}$=(  )
A.1B.-iC.-1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若数列{an}的前n项和为Sn,且3Sn-2an=1,则{an}的通项公式是an=(-2)n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校为了解本校学生的身体素质情况,决定在全校的1000名男生和800名女生中按分层抽样的方法抽取45名学生对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余不参加体育锻炼),调查结果如表:
  A类B类 C类 
 男生 18 x 3
 女生 10 8 y
(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时与性别有关;
  男生女生 总计 
 A类   
 B类和C类   
 总计   
(3)在抽取的样本中,从课余不参加体育锻炼学生中随机选取三人进一步了解情况,求选取三人中男女都有且男生比女生多的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.10 0.05 0.01 
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P是圆F1:(x-1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.
(1)求点M的轨迹C的方程;
(2)过点$G({0,\frac{1}{3}})$的动直线l与点M的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|7<2x<33,x∈N},B={x|log3(x-1)<1},则A∩(∁RB)等于(  )
A.{4,5}B.{3,4,5}C.{x|3≤x<4}D.{x|3≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在半径为1的圆O内任取一点M,过M且垂直OM与直线l与圆O交于圆A,B两点,则AB长度大于$\sqrt{3}$的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在边长为4的正三角形ABC中,D,F分别为AB,AC的中点,E为AD的中点.将△BCD与△AEF分别沿CD,EF同侧折起,使得二面角A-EF-D与二面角B-CD-E的大小都等于90°,得到如图2所示的多面体.

(1)在多面体中,求证:A,B,D,E四点共同面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3$\sqrt{3}$,则BC的长是$\sqrt{13}$.

查看答案和解析>>

同步练习册答案