精英家教网 > 高中数学 > 题目详情
定积分
2
-2
(xcosx+
4-x2
)dx=
 
考点:微积分基本定理
专题:计算题,导数的概念及应用
分析:分步积分,即可得出结论.
解答: 解:
2
-2
(xcosx+
4-x2
)dx=
2
-2
(xcosx)dx+
2
-2
4-x2
dx=(xsinx+cosx)
|
2
-2
+
1
2
π×4

=0+2π.
故答案为:2π.
点评:本题考查微积分基本定理,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
是已知的平面向量,向量
a
b
c
在同一平面内且两两不共线,有如下四个命题:
①给定向量
b
,总存在向量
c
,使
a
=
b
+
c

②给定向量
b
c
,总存在实数λ和μ,使
a
b
c

③给定单位向量
b
和正数μ,总存在单位向量
c
和实数λ,使
a
b
c

④若|
a
|=2,存在单位向量
b
c
和正实数λ,μ,使
a
b
c
,则3λ+3μ≥6
其中真命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足|
 
z
1
 
2
i
|=1+i,(其中i为虚数单位),则|z|
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=asinx+bx+c(a,b,c∈R),若f(0)=-2,f(
π
2
)=1,则f(-
π
2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两圆C1:x2+y2-10x-10y=0与C2:x2+y2+6x+2y-40=0的公共弦所在直线方程是
 
,公共弦的长等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点在直线y=x-2上,现将抛物线沿向量
a
进行平移,且使得抛物线的焦点沿直线y=x-2移到点(2a,4a+2)处,则平移后所得的抛物线被y轴截得的弦长?=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>1,则
lim
n→+∞
an-bn+1+1
an+1+bn-1
)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)存在实数x使得sinx+cosx=2;
(2)f(x)=x+
4
x
(x>0)的最小值为4;
(3)若a∥α,b∥a,则b∥α.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对任意两个不等实数x1,x2,且x1,x2∈(a,b)都有x1f(x1)+x2f(x2)>x1f(x2+x2f(x)1),则称函数f(x)为区间(a,b)上的“G”函数.给出下列命题:①f(x)=2x-sinx是R上的“G”函数;②f(x)=
x2+4x(x≥0)
x-1,x<0
是R上的“G”函数;③f(x)=
2x(x≥1)
2x+1,x<1
是R上的“G”函数;④若函数f(x)=ex-ax-2是R上的“G”函数,则a≤0.其中正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案