精英家教网 > 高中数学 > 题目详情
16.若x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=3,则x+x-1=(  )
A.7B.9C.11D.13

分析 把已知等式两边平方即可求得答案.

解答 解:由x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=3,
两边平方得:$({x}^{\frac{1}{2}}-{x}^{-\frac{1}{2}})^{2}=9$,
即x+x-1-2=9,
∴x+x-1=11.
故选:C.

点评 本题考查根式与分数指数幂的互化及运算,能够想到把已知等式两边平方是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=$\frac{1}{2}$(|x-a|+|x-2a|-3|a|).若集合{x|f(x-1)-f(x)>0,x∈R}=∅,则实数a的取值范围为$(-∞,\frac{1}{6}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p;方程x2+2x-a=0有两个不等实数解,命题q:不等式a2-a≥6,若p与q有一个正确,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列有关命题的说法中正确的是(  )
A.若命题“p∧q”为假,则“p∨q”也为假
B.命题“?x0∈R,x${\;}_{0}^{2}$+x0+1<0”的否定是“?x∈R,x2+x+1<0”
C.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,AC=$\sqrt{2}$,AB=$\sqrt{3}$+1,∠BAC=45°,点P满足:$\overrightarrow{BP}$=(1-λ)$\overrightarrow{BA}$+λ$\overrightarrow{BC}$(λ>0),AP=$\frac{\sqrt{2}}{2}$.
(1)求$\overrightarrow{BA}$•$\overrightarrow{AC}$的值;
(2)求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图四面体O-ABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$ $\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,D为AB的中点,M为CD的中点,则$\overrightarrow{CM}$=$\frac{1}{4}\overrightarrow{a}$+$\frac{1}{4}\overrightarrow{b}$-$\frac{1}{2}\overrightarrow{c}$($\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在正三棱柱ABC-A1B1C1中,若AB1⊥BC1,则下列关于直线A1C和AB1,BC1的关系的判断正确的为(  )
A.A1C和AB1,BC1都垂直B.A1C和AB1垂直,和BC1不垂直
C.A1C和AB1,BC1都不垂直D.A1C和AB1不垂直,和BC1垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,命题q:函数y=(2a-1)x为减函数,若“p且q”为假命题,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{2}$]∪($\frac{2}{3}$,+∞)B.(-∞,$\frac{1}{2}$]C.($\frac{2}{3}$,+∞)D.($\frac{1}{2}$,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=2cos\frac{x}{2}(\sqrt{3}sin\frac{x}{2}+cos\frac{x}{2})-1,x∈R$.
(1)求f(x)的最小正周期;
(2)设$α,β∈({0,\frac{π}{2}}),f(α)=2,f(β)=\frac{6}{5}$,求f(α+β)的值.

查看答案和解析>>

同步练习册答案