精英家教网 > 高中数学 > 题目详情
19.若不等式${(\frac{1}{2})^{{x^2}-2ax}}<{2^{3x+{a^2}}}$恒成立,则实数a的取值范围是(  )
A.(0,1)B.$(\frac{3}{4},+∞)$C.$(0,\frac{3}{4})$D.$(-∞,\frac{3}{4})$

分析 不等式恒成立化为x2-2ax>-(3x+a2)恒成立,即△<0,从而求出a的取值范围.

解答 解:不等式${(\frac{1}{2})^{{x^2}-2ax}}<{2^{3x+{a^2}}}$恒成立,
即${(\frac{1}{2})}^{{x}^{2}-2ax}$<${(\frac{1}{2})}^{-(3x{+a}^{2})}$恒成立,
即x2-2ax>-(3x+a2)恒成立,
即x2-(2a-3)x+a2>0恒成立,
∴△=(2a-3)2-4a2<0,
即(2a-3+2a)(2a-3-2a)<0,
解得a>$\frac{3}{4}$;
∴实数a的取值范围是($\frac{3}{4}$,+∞).
故选:B.

点评 本题考查了不等式的解法与应用问题,也考查了转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数$f(x)={A}sin({ωx+\frac{π}{6}})$(ω>0)的图象与x轴正半轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,若要得到函数g(x)=Asinωx的图象,只要将f(x)的图象(  )个单位.
A.向左平移$\frac{π}{6}$B.向右平移$\frac{π}{6}$C.向左平移$\frac{π}{12}$D.向右平移$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校高三月考过后,化学组老师从高三年级1000名学生中抽出了20人的化学成绩(满分:100分),作为样本进行分析,将成绩按如下方式分成五组:第一组[50,60),第二组:[60,70),…,第五组[90,100).如图是按上述分组方法得到的频率分布直方图.
(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此求这20位学生化学成绩的平均数,中位数,众数;
(2)估计该校高三年级这次月考中化学成绩超过80分的人数;
(3)样本中,从化学成绩在80分以上(包括80分)的学生中人选2人,求至少有1人成绩在90-100分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}中,a1+a7=36,a3+a9=20.则数列{an}的前9项和为(  )
A.66B.86C.106D.126

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=A{cos^2}(ωx+φ)+1({A>0,ω>0,0<φ<\frac{π}{2}})$的最大值为3,f(x)的图象与y轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f(1)+f(2)+f(3)+…+f(2017)的值为(  )
A.4030B.4032C.4033D.4035

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a=({2,7})$,$\overrightarrow b=({x,-3})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则实数x的取值范围为(  )
A.$x<\frac{21}{2}$B.$-\frac{6}{7}<x<\frac{21}{2}$C.$x<\frac{6}{7}$D.$x<\frac{21}{2}$且$x≠-\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式:a(a-1)x2-(2a-1)x+1>0,其中α∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为灾区儿童献爱心活动中,某校26个班级捐款数统计如下表,则捐款数众数是(  )
捐款数/元350360370380390400410
班级个数/个3169421
A.370元B.380元C.390元D.410元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.边长为5,7,8的三角形的最大角与最小角的和是(  )
A.75°B.90°C.135°D.120°

查看答案和解析>>

同步练习册答案