精英家教网 > 高中数学 > 题目详情
在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.
(1)求证A1A⊥A1C;
(2)若A1A=A1C,求二面角B-A1C-B1的余弦值.
考点:与二面角有关的立体几何综合题,空间中直线与直线之间的位置关系
专题:计算题,证明题
分析:(1)由A1A⊥BC,A1A⊥A1B证明A1A⊥平面A1BC,进而证明A1A⊥A1C;(2)通过空间直角坐标系中向量的运算求余弦值.
解答: 解:(1)∵平面A1ACC1⊥平面ABC,AC⊥BC,
∴BC⊥平面A1ACC1
∴A1A⊥BC,
∵A1B⊥C1C,A1A∥CC1
∴A1A⊥A1B,
∴A1A⊥平面A1BC,
∴A1A⊥A1C;
(Ⅱ)建立如图所示的坐标系C-xyz.
设AC=BC=2,
∵A1A=A1C,
则A(2,0,0),B(0,2,0),A1(1,0,1),C(0,0,0).
CB
=(0,2,0),
CA1
=(1,0,1),
A1B1
=
AB
=(-2,2,0).
n1
=(a,b,c)为面BA1C的一个法向量,则
n1
CB
=
n1
CA1
=0,
2b=0
a+c=0
取a=1,
n1
=(1,0,-1).
同理,面A1CB1的一个法向量为
n2
=(1,1,-1).
∴cos<
n1
n2
>=
n1
n2
.
n1
 
.
.
n2
 
.
=
6
3

∴二面角B-A1C-B1的余弦值为
6
3
点评:本题考查了线面垂直的判定定理,用到了面面垂直的定义,也考查了在空间直角坐标系中求角的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某市一公交线路某区间内共设置六个站点(如图所示),分别为A0,A1,A2,A3,A4,A5,现有甲、乙两人同时从A0站点上车,且他们中的每个人在站点Ai(i=1,2,3,4,5)下车是等可能的.则甲、乙两人不在同一站点下车的概率为(  )
A、
2
5
B、
3
5
C、
4
5
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log3x的定义域是(  )
A、RB、(0,+∞)
C、(1,+∞)D、(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.
(1)求三棱锥P-ABC的体积;
(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(2,2),
b
=(-3,4).
(Ⅰ)若
c
=(8,1),且(
a
-2
b
)∥(k
a
+
c
),求实数k的值;
(Ⅱ)若|
c
|=2,且
a
c
的夹角为45°.求证:(
1
2
a
-
c
)⊥
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b
(1)若-2≤a≤4,-2≤b≤4,且a∈Z,b∈Z,求方程f(x)=0无实根的概率;
(2)若|a|≤1,|b|≤1,求方程f(x)=
1
4
b2+b-
1
4
无实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,平面A′BC⊥侧面A′ABB′.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)设点M是线段A′C′中点,点N是线段A′C中点,若AB=BC=AA′=2,求四棱锥C-MNBB′的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=sinx(sinx+cosx).
(Ⅰ)求f(x)的最大值及相应x的值;
(Ⅱ)在锐角△ABC中,满足f(A)=1.求sin(2B+C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为1的定圆⊙P的圆心P到定直线l的距离为2,Q是l上一动点,⊙Q与⊙P相外切,⊙Q交l于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值.求∠MAN的度数.

查看答案和解析>>

同步练习册答案