精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.
(1)求三棱锥P-ABC的体积;
(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).
考点:异面直线及其所成的角,棱柱、棱锥、棱台的体积
专题:空间角
分析:(1)利用三棱锥的体积计算公式即可得出;
(2)由于BC∥AD,可得∠ECB或其补角为异面直线EC和AD所成的角θ,由PA⊥平面ABCD,可得BC⊥PB,再利用直角三角形的边角关系即可得出.
解答: 解:(1)∵PA⊥平面ABCD,底面ABCD是矩形,
高PA=2,BC=AD=2,AB=1,
∴S△ABC=
1
2
×2×1
=1.
故VP-ABC=
1
3
×SABC×PA
=
1
3
×1×2=
2
3

(2)∵BC∥AD,∴∠ECB或其补角为异面直线EC和AD所成的角θ,
又∵PA⊥平面ABCD,
∴PA⊥BC,又BC⊥AB,
∴BC⊥平面PAB,∴BC⊥PB,
于是在Rt△CEB中,BC=2,BE=
1
2
PB=
5
2

tanθ=
BE
BC
=
5
4

∴异面直线EC和AD所成的角是arctan
5
4
点评:本题考查了三棱锥的体积计算公式、异面直线所成的角,考查了推理能力和计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

连掷骰子两次(骰子六个面分别标有数字1,2,3,4,5,6)朝上的面的点数分别记为a和b,则直线:3x-4y=0与圆(x-a)2+(y-b)2=4相切的概率为(  )
A、
1
2
B、
1
3
C、
1
6
D、
1
18

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=1-xsinx在x=x0处取得极值,则(1+x02)(1+cos2x0)-1的值为(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第三象限角,则下列等式中能成立的是(  )
A、sinα+cosα=1.2
B、sinα+cosα=-0.9
C、sinαcosα=
3
D、sinα+cosα=-1.2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x-1的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(a+lnx)的图象在点(e,f(e))(e为自然对数的底数)处的切线的斜率为3.
(Ⅰ)求实数a的值;
(Ⅱ)若k为整数时,k(x-1)<f(x)对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.
(1)求证A1A⊥A1C;
(2)若A1A=A1C,求二面角B-A1C-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
1
2
,中奖可以获得3分;方案乙的中奖率为
2
3
,中奖可以得2分;未中奖则不得分,每人有且只有两次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(Ⅰ)若小亮选择方案甲、方案乙各抽奖一次,求他的累计得分不为零的概率;
(Ⅱ)若小亮的抽奖方式是在方案甲、或方案乙中选择其一连抽两次,或选择方案甲、方案乙各抽一次,求小亮选择哪一种方式抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且经过点A(0,-1)
(1)求椭圆的方程;
(2)椭圆C的短轴端点分别为A、B,直线AM、BM分别与椭圆C交于E、F两点,其中点M(m,
1
2
)满足m≠0且m≠±
3
,试证明直线EF与y轴交点的位置与m的值无关.

查看答案和解析>>

同步练习册答案