精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A′B′C′中,平面A′BC⊥侧面A′ABB′.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)设点M是线段A′C′中点,点N是线段A′C中点,若AB=BC=AA′=2,求四棱锥C-MNBB′的体积.
考点:平面与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(I)利用直三棱柱的性质、面面垂直的性质即可得出;
(II)利用线面垂直的判定定理和性质定理、三棱锥的体积计算公式即可得出.
解答: (I)证明:如图,作A在A′B上的射影D.
∵平面ABC⊥侧面A′ABB′,且平面A′BC∩侧面A′ABB′=A′B,
∴AD⊥平面A′BC.
∵BC?平面A′BC,∴AD⊥BC,
∵三棱柱ABC-A′B′C′是直三棱柱,
∴AA′⊥底面ABC,
∴AA′⊥BC.
又AA′∩AD=A,∴BC⊥侧面A′ABB′,AB?侧面A′ABB′,
故AB⊥BC.
(II)解:延长MN交AC于点G,MN为△AC′C的中位线.
∴MN∥CC′,
∵CC′⊥面ABC,
∴MN⊥面ABC,
∵AC?面ABC,∴MN⊥AC,
∵AB=BC,G为中点,∴BG⊥AC.
∵BG∩MN=G,
∴AC⊥面BGN,即CG为四棱锥C-MNBB′的高.
CG=
1
2
AC=
1
2
22+22
=
2

S梯形MNBB′=
1
2
×(1+2)×
2
=
3
2
2

V四棱锥C-MNBB′=
1
3
×
3
2
2
×
2
=1
点评:本题考查了直三棱柱的性质、面面垂直的性质、线面垂直的判定定理和性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列各组函数中,表示同一函数的是(  )
A、y=1,y=x0
B、y=x-1,y=
x2-1
x+1
C、y=x,y=
3x3
D、y=|x|,y=(
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x-1的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.
(1)求证A1A⊥A1C;
(2)若A1A=A1C,求二面角B-A1C-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校组织一次篮球投篮测试,已知甲同学每次投篮的命中率均为
1
2

(1)若规定每投进1球得2分,求甲同学投篮4次得分X的概率分布和数学期望;
(2)假设某同学连续3次投篮未中或累计7次投篮未中,则停止投篮测试,问:甲同学恰好投篮10次后,被停止投篮测试的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
1
2
,中奖可以获得3分;方案乙的中奖率为
2
3
,中奖可以得2分;未中奖则不得分,每人有且只有两次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(Ⅰ)若小亮选择方案甲、方案乙各抽奖一次,求他的累计得分不为零的概率;
(Ⅱ)若小亮的抽奖方式是在方案甲、或方案乙中选择其一连抽两次,或选择方案甲、方案乙各抽一次,求小亮选择哪一种方式抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

为加强课程管理和质量监控,某地设置普通高中学生学业水平测试,对测试结果实行等级计分,分为4个等级,用A、B、C、D表示,现有50名学生参加数学和英语测试,统计人数如表:
人数英语
ABCD
数学A9a30
B38b1
C3421
D0020
(1)求a+b的值;
(2)采用分层抽样的方法,从英语得A的学生中抽取5名,其中数学也得A的学生应抽几名?
(3)在第(2)问中抽取的那5名英语得A的学生中任取两名学生,求两名学生数学都得A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b应满足的条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为sn=-10n2+n
(1)求此数列的通项公式
(2)当n为何值时sn有最大值,并求出最大值.

查看答案和解析>>

同步练习册答案