精英家教网 > 高中数学 > 题目详情
若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b应满足的条件是
 
考点:利用导数研究函数的极值
专题:导数的概念及应用
分析:首先求出函数的导数,然后令导数为零,求出函数的极值,最后确定b的范围.
解答: 解:由题意得f′(x)=3x2-3b,
令f′(x)=0,则x=±
b

又∵函数f(x)=x3-3bx+b在区间(0,1)内有极小值,
∴0<
b
<1,
∴b∈(0,1),
故答案为(0,1).
点评:熟练运用函数的导数求解函数的极值问题,同时考查了分析问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=log3x的定义域是(  )
A、RB、(0,+∞)
C、(1,+∞)D、(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,平面A′BC⊥侧面A′ABB′.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)设点M是线段A′C′中点,点N是线段A′C中点,若AB=BC=AA′=2,求四棱锥C-MNBB′的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=sinx(sinx+cosx).
(Ⅰ)求f(x)的最大值及相应x的值;
(Ⅱ)在锐角△ABC中,满足f(A)=1.求sin(2B+C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在斜三棱柱ABC-A1B1C1中,侧面A1ACC1是边长为2的菱形,∠A1AC=60°.在面ABC中,AB=2
3
,BC=4,M为BC的中点,过A1,B1,M三点的平面交AC于点N.
(1)求证:N为AC中点;
(2)平面A1B1MN⊥平面A1ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三菱柱ABC-A1B1C1中,CA⊥CB,CA=CB=1,AA1=2,且N是棱A1B1的中点,
(Ⅰ)求证:A1B⊥C1N;
(Ⅱ)求直线A1B和直线B1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax+
1-a
x
-1(a∈R)
(1)当a=-1时,求曲线y=f(x)在(2,f(2))处的切线方程;
(2)当0≤a≤1时,试讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为1的定圆⊙P的圆心P到定直线l的距离为2,Q是l上一动点,⊙Q与⊙P相外切,⊙Q交l于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值.求∠MAN的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,地面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点.
(Ⅰ)求证:PA∥平面EDB;
(Ⅱ)求证:DE⊥平面PBC;
(Ⅲ)求二面角E-BD-C的平面角的余弦值.

查看答案和解析>>

同步练习册答案