精英家教网 > 高中数学 > 题目详情
4.已知函数f($\frac{1-x}{1+x}$)=x,则f(x)的表达式是f(x)=$\frac{1-x}{1+x}$(x≠-1).

分析 利用换元法可求得.

解答 解:设$\frac{1-x}{1+x}=t$,解得x=$\frac{1-t}{1+t}$,所以解析式为$f(x)=\frac{1-x}{1+x}$;
故答案为:f(x)=$\frac{1-x}{1+x}$(x≠-1).

点评 本题考查了利用换元法求解析式;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{3}}{2}$,过焦点垂直长轴的弦长为1.
(I)求椭圆E的方程;
(II)椭圆E的右焦点为F,⊙O:x2+y2=1的切线MN与椭圆E交于M,N两点(均在y轴的右侧),求△MNF内切圆的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.三角形ABC中,BC=4,且$AB=\sqrt{3}AC$,则三角形ABC面积最大值为$4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{lo{g}_{0.5}(-x),x<0}\end{array}\right.$,若f(a)-2f(-a)>0,则实数a的取值范围是(  )
A.a>1B.-1<a<0C.a>1或-1<a<0D.-1<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点P为直线y=x+1上的一点,M,N分别为圆C1:(x-4)2+(y-1)2=4与圆C2:x2+(y-2)2=1上的点,则|PM|-|PN|的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知关于实数x,y的二元一次不等式组$\left\{{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}}\right.$.
(Ⅰ)在右下图坐标系内画出该不等式组所表示的平面区域,并求其面积;
(Ⅱ)求$\frac{y}{x+1}$的取值范围;
(Ⅲ)求x2+y2的最小值,并求此时x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=aex(x+1)(其中e为自然对数的底数),g(x)=x2+4x+b,已知它们在x=0处有相同的切线.
(1)求函数y=f(x)的增区间;
(2)求曲线y=g(x)和直线y=x+2所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=Asin(ωx+φ)(A>0,ω>0),若两个不等的实数${x_1},{x_2}∈\left\{{x|f(x)=\frac{A}{2}}\right\}$,且|x1-x2|的最小值为π,则f(x)的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:2x+my-2-3m=0(m∈R).
(1)判断直线l与圆x2+y2-4x-6y+9=0的位置关系,并说明理由;
(2)求实数m的取值范围,使得总能找到一个同事满足下列条件的圆与直线l相切:①面积为π;②其某条直径的两端点分别在两个坐标轴上.

查看答案和解析>>

同步练习册答案