精英家教网 > 高中数学 > 题目详情
3.已知复数$z=\frac{(1-i)+2(1+i)}{2-i}$,若z2+az+b=1-i,
(1)求z;
(2)求实数a,b的值.

分析 (1)直接利用复数代数形式的乘除运算化简得答案;
(2)把(1)中求得的z代入z2+az+b=1-i,整理后利用复数相等的条件列式求得a,b的值.

解答 解:(1)$z=\frac{(1-i)+2(1+i)}{2-i}$=$\frac{3+i}{2-i}=\frac{(3+i)(2+i)}{(2-i)(2+i)}=\frac{5+5i}{5}=1+i$;
(2)由z2+az+b=1-i,得(1+i)2+a(1+i)+b=1-i,
∴a+b+(a+2)i=1-i,
则$\left\{\begin{array}{l}{a+b=1}\\{a+2=-1}\end{array}\right.$,解得a=-3,b=4.

点评 本题考查复数代数形式的乘除运算,考查了复数相等的条件,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如表是某小卖部一周卖出热茶的杯数与当天气温的对比表:
气温/℃18131040
杯数2434395162
若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是(  )
A.y=x+6B.y=-x+42C.y=-2x+60D.y=-3x+78

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$ )的图象与x轴的一个交点为(-$\frac{π}{6}$,0),与此交点距离最短的最高点坐标是($\frac{π}{12}$,1).
(1)求函数f(x)的表达式.
(2)求方程f(x)=a (-1<a<0)在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin(-$\frac{13π}{4}$)的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)、g(x)满足如表格:
2x+13579
f(2x+1)1234
x1234
g(x)3579
若g[f(2x+1)]=3,则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若f'(x0)=2,则$\lim_{△x→0}\frac{{f({x_0})-f({x_0}+△x)}}{△x}$=(  )
A.-1B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若0<x≤$\frac{π}{3}$,则函数y=sinx+cosx+sinxcosx的值域为(1,$\frac{1}{2}+\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若sin(α-β)cosα-cos(α-β)sinα=m,且β为第二象限角,则cosβ的值为(  )
A.$\sqrt{1-{m^2}}$B.$\sqrt{{m^2}-1}$C.$-\sqrt{1-{m^2}}$D.$-\sqrt{{m^2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线2x2-3y2-6=0,若它的一条弦AB被直线y=kx(k≠0)平分,则弦AB的斜率为$\frac{2}{3}$k.

查看答案和解析>>

同步练习册答案