精英家教网 > 高中数学 > 题目详情
12.设a=$\int_{1}^{2}{(3{x^2}-2x)dx}$,则二项式${(a{x^2}-\frac{1}{x})^6}$的展开式中的常数项为(  )
A.120B.-120C.-240D.240

分析 先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.

解答 解:∵a=$\int_{1}^{2}{(3{x^2}-2x)dx}$=(x3-x2)${|}_{1}^{2}$=4-0=4,则二项式${(a{x^2}-\frac{1}{x})^6}$=${({ax}^{2}-\frac{1}{x})}^{6}$ 的通项公式为Tr+1=${C}_{6}^{r}$•(-1)r•46-r•x12-3r
令12-3r=0,求得 r=4,
可得展开式中的常数项为${C}_{6}^{4}$•42=210,
故选:D.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\sqrt{3}$x+2cosx在区间[0,$\frac{π}{2}$]上的最大值是(  )
A.2B.$\frac{\sqrt{3}π}{2}$C.$\frac{\sqrt{3}π+3}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a1=1,an+1>an,且(an+1-an2-2(an+1+an)+1=0,计算a2,a3,然后猜想an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若C${\;}_{n}^{2}$A${\;}_{2}^{2}$=42,则$\frac{n!}{3!(n-3)!}$=35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-(-1)k2lnx(k∈N*).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当k为奇数时,x>0,n∈N*时,求证:[f′(x)]n-2n-1f′(xn)≥2n(2n-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l1:(a+1)x+y-2a+1=0,l2:2x+ay-1=0,a∈R,
(1)若l1与l2平行,求a的值;
(2)l1过定点A,l2过定点B,求A,B的坐标,并求过A,B两点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=asinx+bcosx(x∈R)的最大值是3.则a2+b2的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:
平均气温(℃)-2-3-5-6
销售额(万元)20232730
根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间回归直线方程$\widehat{y}$=bx+a的系数$\widehat{b}$=-2.4,则预测平均气温为-8℃时该商品销售额为34.6万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx-ax(a∈R).
(1)若函数f(x)在x=2处的切线方程为y=x-b,求a,b的值;
(2)若函数g(x)=f(x)+$\frac{1}{2}$x2有两个极值点,且h(x)=ax-ex在(1,+∞)有最大值,求a的取值范围;
(3)讨论方程f(x)=0解的个数,并证明你的结论.

查看答案和解析>>

同步练习册答案