精英家教网 > 高中数学 > 题目详情
已知抛物线方程为,直线的方程为,在抛物线上有一动点P到y轴的距离为,P到直线的距离为,则的最小值为(    )
A.B.C.D.
D

试题分析:如图,可知抛物线焦点F(2,0),准线为x=-1,根据抛物线的定义,∴d1+d2=PM+PN-1=PM+PF-1≥FM-1≥d-1,d为F到l的距离,d=,∴d1+d2的最小值为
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直线,且有且只有一个公共点
(ⅰ)证明直线过定点,并求出定点坐标;
(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

【理科】双曲线
x2
4
-y2
=1与直线y=kx+1有唯一公共点,则k值为(  )
A.
2
2
B.-
2
2
C.±
2
2
D.±
2
2
或±
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F为抛物线y2=4x的焦点,A,B,C在抛物线上,若=0,则||+||+||=(  )
A.6B.4C.3 D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知两条抛物线,过原点的两条直线分别交于两点,分别交于两点.
(1)证明:
(2)过原点作直线(异于)与分别交于两点.记的面积分别为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设点P是曲线y=x2上的一个动点,曲线y=x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=x2的另一交点为Q,则PQ的最小值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·江西模考]设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是(  )
A.y2=-8xB.y2=8x
C.y2=-4xD.y2=4x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是抛物线为上的一点,以S为圆心,r为半径()做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点。
(1)求证:直线CD的斜率为定值;
(2)延长DC交x轴负半轴于点E,若EC : ED =" 1" : 3,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

同步练习册答案