精英家教网 > 高中数学 > 题目详情
14.已知集合A={x|(x+1)(x-2)≥0},B={x|log3(2-x)≤1},则A∩(∁RB)=(  )
A.B.{x|x≤-1,x>2}C.{x|x<-1}D.{x|x<-1,x≥2}

分析 先分别求出集合A和B,再求出∁RB,由此能求出A∩(∁RB).

解答 解:∵集合A={x|(x+1)(x-2)≥0}={x|x≥2或x≤-1},
B={x|log3(2-x)≤1}={x|-1≤x<2},
RB={x|x≥2,或x<-1},
则A∩(∁RB)={x|x≥2,或x<-1}.
故选:D.

点评 本题考查交集的求法及应用,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=sinxcosx-{sin^2}(x-\frac{π}{4})(x∈R)$.
(1)求函数f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若$f(\frac{C}{2})=0$,c=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数$\frac{a+i}{1-i}$(i为虚数单位,a为实数)为纯虚数,则不等式|x+a|+|x|>3的解集为(  )
A.{x|x>1}B.{x|x<-2}C.{x|x<-1或x>2}D.{x|x<-2或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线ax+y=0截圆x2+y2-2x-6y+6=0所得的弦长为$2\sqrt{3}$,则实数a=(  )
A.2B.$\sqrt{3}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.实数x,y满足$\left\{\begin{array}{l}x-y+1>0\\ x+y-3≥0\\ 2x+y-7≤0\end{array}\right.若x-2y≥m$恒成立,则实数m的取值范围是(-∞,-4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若“?x0∈R,|x0+1|+|x0-1|≤m”是真命题,则实数m的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={x|x2-3x-4≤0},集合N={x|lnx≥0},则M∩N=(  )
A.{x|1≤x≤4}B.{x|x≥1}C.{x|-1≤x≤4}D.{x|x≥-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.${(x-\frac{1}{x})^6}$的展开式中含x2的项的系数是(  )
A.-20B.20C.-15D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x+a-1|+|x-2a|.
(Ⅰ) 若f(1)<3,求实数a的取值范围;
(Ⅱ) 若a≥1,x∈R,求证:f(x)≥2.

查看答案和解析>>

同步练习册答案