精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥P-ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,BC=2$\sqrt{2}$,AP=AD=AB=$\sqrt{2}$,∠PAB=∠PAD=α.
(1)试在棱PA上确定一个点E,使得PC∥平面BDE,并求出此时$\frac{AE}{EP}$的值;
(2)当α=60°时,求证:CD⊥平面PBD.

分析 (1)连接AC,BD,相交于O,过O作OE∥PC,与PA交于E,如图1,则PC∥平面BDE;
(2)当α=60°时,△PAD和△PAB都是等边三角形,PB=PD,过A作AF⊥BD,则F为BD的中点,
利用勾股定理可以判断线线垂直,进一步判断线面垂直.

解答 解:(1)连接AC,BD,相交于O,过O作OE∥PC,与PA交于E,如图1,则PC∥平面BDE,
此时AE:EP=AO:OC=AD:BC=$\sqrt{2}$:$2\sqrt{2}$=1:2;

(2)当α=60°时,△PAD和△PAB都是等边三角形,PB=PD,
过A作AF⊥BD,则F为BD的中点,

所以PF⊥BD,BD=2,所以AF=PF=$\frac{1}{2}$BD=1,所以PF2+AF2=PA2,所以PF⊥AF,
所以PF⊥平面ABCD,
所以PF⊥CD,
过D作DH⊥BC,则DH=AB=$\sqrt{2}$,HC=$\sqrt{2}$,所以CD=2,所以CD2+BD2=BC2,所以CD⊥BD,
BD∩PF=F,
所以CD⊥平面PBD.

点评 本题考查了线面平行的判定以及线面垂直的判定定理和性质定理的运用;关键是适当作辅助线,将问题转化为线线关系解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图已知抛物线 C:y2=2px(p>0)的准线为 l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切,过原点作倾斜角为$\frac{π}{3}$的直线t,交 l于点A,交圆M于点B,且|AO|=|OB|=2.
(I)求圆M和抛物线C的方程;
(Ⅱ)已知点N(4,0),设G,H是抛物线上异于原点O的两个不同点,且N,G,H三点共线,证明:$\overrightarrow{OG}⊥\overrightarrow{OH}$并求△GOH面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=ax3+bx2+cx+d有三个零点x1,x2,x3,且x1<x2<x3,有下列结论:(1)b2>3ac;(2)a•f′(x)>0;(3)a•f′(x3)>0;(4)x1+x2+x3=-$\frac{b}{a}$ 其中正确命题的个数共有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数y=f(x),满足f(2-x)=f(x),(x-1)f′(x)<0,若f(3a+1)<f(3),则实数a的取值范围是(  )
A.(-∞,-$\frac{2}{3}$)B.($\frac{2}{3}$,+∞)C.(-$\frac{2}{3}$,$\frac{2}{3}$)D.(-∞,-$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|2$\overrightarrow{a}$-$\overrightarrow{b}$|=1,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=1,则$\overrightarrow{a}$$•\overrightarrow{b}$的取值范围[$-\frac{1}{9}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.各项均为正奇数的数列a1,a2,a3,a4中,前三项依次成公差为d(d>0)的等差数列,后三项依次成公比为q的等比数列,若a4-a1=100,则q的值为$\frac{11}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点P(1,$\frac{3}{2}$)在椭圆E上,且点P和F1关于点C(0,$\frac{3}{4}$)对称.
(1)求椭圆E的方程;
(2)过右焦点F2的直线l与椭圆相交于A,B两点,过点P且平行于AB的直线与椭圆交于另一点Q,问是否存在直线l,使得四边形PABQ的对角线互相平分?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过A(-1,$\frac{3}{2}$)、B(0,$\sqrt{3}$)两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B且不与坐标轴垂直的直线交椭圆C于另一点M,交x轴于点P,点M关于x轴的对称点为N,直线BN交x轴于点Q.求|OP|+|OQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\frac{x+2}{x+1}$在[0,+∞)上的值域是(1,2].

查看答案和解析>>

同步练习册答案