精英家教网 > 高中数学 > 题目详情
18.如图,课桌上放着一个圆锥SO,点A为圆锥底面圆周上一点,SA=2cm,OA=1cm,蚂蚁从点A沿圆锥的侧面爬行一周再回到A,则蚂蚁行迹的最短路程是(  )
A.2πcmB.2$\sqrt{2}$cmC.4$\sqrt{2}$cmD.4cm

分析 利用圆锥侧面展开图的弧长等于底面圆的周长,进而得出扇形圆心角的度数,即可求出AA′的长.

解答 解:由题意可得出:SA=SA′=2cm,
∠ASA′=$\frac{2π×1}{2}$=π,
∴AA′=4cm,
故选:D.

点评 此题主要考查了平面展开图的最短路径问题,得出∠ASA′的度数是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知cos(θ+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$,θ∈(0,$\frac{π}{2}$),则cosθ=$\frac{\sqrt{5}}{5}$; sin(2θ-$\frac{π}{3}$)=$\frac{4+3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解不等式:ax2+(a+1)x+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知函数f(x)的定义域为(-1,2],求函数f(x2-1)的定义域;
(2)已知函数f(3x-4)的定义域为[0,4),求函数f(1-2x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\frac{1}{2}$x2-ln(1-x)的单调增区间为($\frac{1-\sqrt{5}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知α:|x|>1,求β,使β分别为α的
(1)必要非充分条件,β:|x|>$\frac{1}{2}$.
(2)充分非必要条件,β:|x|>2.
(3)充要条件,β:x>1或x<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明$\underset{lim}{x→0}$$\frac{1+x}{1-{e}^{\frac{1}{x}}}$不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设随机变量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=$\frac{5}{9}$,则P(η≥2)的值为(  )
A.$\frac{20}{27}$B.$\frac{8}{27}$C.$\frac{7}{27}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x+2y+4z=1,则x2+y2+z2的最小值是(  )
A.21B.$\frac{1}{21}$C.16D.$\frac{1}{16}$

查看答案和解析>>

同步练习册答案