分析 求出f(x)的零点,设为x0,令f(x)+1=x0即可解出y=f[f(x)+1]的零点.
解答 解:令f(x)=0得$\left\{\begin{array}{l}{x+1=0}\\{x≤0}\end{array}\right.$或$\left\{\begin{array}{l}{lo{g}_{2}x=0}\\{x>0}\end{array}\right.$,解的x=-1或x=1.
即f(x)有两个零点x=1,x=-1.
令f[f(x)+1]=0,则f(x)+1=1或f(x)+1=-1.
即f(x)=0或f(x)=-2.
当f(x)=0时,x=±1,
当f(x)=-2时,$\left\{\begin{array}{l}{x+1=-2}\\{x≤0}\end{array}\right.$或$\left\{\begin{array}{l}{lo{g}_{2}x=-2}\\{x>0}\end{array}\right.$,解的x=-3或x=$\frac{1}{4}$.
综上,f[f(x)+1]共有4个零点.
故答案为:4.
点评 本题考查了函数的零点计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | P1<P2 | B. | P1>P2 | C. | P1=P2 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2) | B. | [-1,+∞) | C. | [0,+∞) | D. | (-2,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 大于10.828 | B. | 小于7.829 | C. | 小于6.635 | D. | 大于2.706 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com