精英家教网 > 高中数学 > 题目详情
10.已知$\underset{lim}{x→∞}$($\frac{x+a}{x-2a}$)x=8,则常数a=ln2.

分析 化简$\underset{lim}{x→∞}$$(1+\frac{3a}{x-2a})^{\frac{x-2a}{3a}×3a+2a}$,利用第二类重要极限,求得e3a=8,解得a的值.

解答 解:$\underset{lim}{x→∞}$($\frac{x+a}{x-2a}$)x
=$\underset{lim}{x→∞}$$(1+\frac{3a}{x-2a})^{\frac{x-2a}{3a}×3a+2a}$,
=e3a•$\underset{lim}{x→∞}$(1+$\frac{3a}{x-2a}$)2a
=e3a
∴e3a=8,
解得:a=$\frac{1}{3}$ln8=ln$\root{3}{8}$=ln2,
故答案为:ln2.

点评 本题考查极限的运算,考查第二类重要极限的应用,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的上一点,点M,N分别是圆(x-3)2+y2=1和(x+3)2+y2=4上的动点,则|PM|+|PN|的最大值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=|lgx|,a,b满足f(a)=f(b)=2f($\frac{a+b}{2}$)的实数,其中0<a<b,则4b-b2的取值范围是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=f(x)是一次函数,且有3f(-1)-f(2)=-19,2f(0)+f(1)=14,求这个函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若不等式组$\left\{\begin{array}{l}{{x}^{2}-x-2>0}\\{2{x}^{2}+(5+2k)x+5k<0}\end{array}\right.$的整数解只有两个,则k的取值范围是[-4,-3)∪(4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$ 则函数y=f[f(x)+1]的零点个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱柱ABC-A1B1C1中已知AB=AC=AA1=2,∠BAA1=∠CAA1=60°,异面直线A1C1与BC成角为45°.
(1)求证:AA1⊥BC;
(2)求二面角B-AA1-C的余弦值;
(3)求直线A1B于平面A1AC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项数列{an}的前n项和为Sn,满足:an2=2Sn-an(n∈N+
(1)证明:数列{an}为等差数列,并求数列{an}的通项公式;
(2)设bn=3n+(-1)n-1λ•2an,是否存在整数λ(λ≠0),使bn+1>bn对一切n∈N+恒成立?若存在,求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.判断下列对应哪些是由A到B的映射?为什么?
(1)A=R,B={y|y>0},f:x→y=1+$\frac{1}{|x|}$
(2)A=R,B={y|y≥0},f:x→y=x2
(3)A={x|x≥3},B={y|y≥0},f:x→y=$\sqrt{x}$.

查看答案和解析>>

同步练习册答案