精英家教网 > 高中数学 > 题目详情
不等式ax2+bx+c<0的解集为(-∞,m)∪(n,+∞),其中m<0<n,则不等式cx2+bx+a>0的解集是
 
考点:一元二次不等式的解法
专题:不等式的解法及应用
分析:不等式ax2+bx+c<0的解集为(-∞,m)∪(n,+∞),其中m<0<n,可得a<0,m,n是一元二次方程ax2+bx+c=0的两个实数根,又根与系数的关系可得:m+n=-
b
a
,mn=
c
a
.不等式cx2+bx+a>0化为
c
a
x2+
b
a
x+1<
0,可得mnx2-(m+n)x+1<0,解出即可.
解答: 解:∵不等式ax2+bx+c<0的解集为(-∞,m)∪(n,+∞),其中m<0<n,
∴a<0,m,n是一元二次方程ax2+bx+c=0的两个实数根,
∴m+n=-
b
a
,mn=
c
a

不等式cx2+bx+a>0化为
c
a
x2+
b
a
x+1<
0,
∴mnx2-(m+n)x+1<0,
(mx-1)(nx-1)<0,
化为(x-
1
m
)(x-
1
n
)>
0,
解得x>
1
n
或x
1
m

∴不等式cx2+bx+a>0的解集是{x|x>
1
n
或x<
1
m
}

故答案为:{x|x>
1
n
或x<
1
m
}
点评:本题考查了一元二次不等式解集与根与系数的关系,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,点(n,Sn)在以点F(0,
1
4
)为焦点,坐标原点为顶点的抛物线上,数列{bn}满足bn=2an
(1)求数列{an}{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知空间四边形ABCD中,向量
AB
=
a
AC
=
b
AD
=
c
,若M为BC的中点,G为△BCD的重心,试用
a
b
c
表示向量
AG

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中是真命题的为(  )
A、命题“若x2-3x+2=0,则x=1”的否命题是“若x2-3x+2=0,则x≠1”
B、命题p:?x0∈R,sin x0>1,则非p:?x∈R,sin x≤1
C、若p且q为假命题,则p,q均为假命题
D、“φ=
π
2
+2kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2-2x=0与圆x2+y2-2x-6y-6=0的位置关系是(  )
A、相交B、相离C、外切D、内切

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|0≤x<6,x∈Z},集合A={1,3,5},B={1,4},则∁UA∪∁UB等于(  )
A、{1,3,4,5}
B、{0,2}
C、{0,2,3,4,5}
D、{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一扇形的中心角是α,所在圆的半径是R,若扇形的周长是一定值C(C>0),该扇形的最大面积为(  )
A、
C
4
B、
C2
4
C、
C2
16
D、
C2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方程为3x-
3
y+2=0,则与l垂直的直线的倾斜角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x+
1
x
=-1,则
(1-x+x2)(1-x2+x4)
x3
的值为
 

查看答案和解析>>

同步练习册答案