精英家教网 > 高中数学 > 题目详情
11.讨论函数y=$\frac{{2}^{x}+1}{{2}^{x}-1}$的奇偶性.

分析 根据函数奇偶性的定义进行判断即可.

解答 解:要使函数有意义,则2x-1≠0,即x≠0,
f(-x)=$\frac{{2}^{-x}+1}{{2}^{-x}-1}$=$\frac{1+{2}^{x}}{1-{2}^{x}}$=-$\frac{{2}^{x}+1}{{2}^{x}-1}$=-f(x),
即函数f(x)是奇函数.

点评 本题主要考查函数奇偶性的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(4,3),则向量$\overrightarrow{a}$、$\overrightarrow{b}$夹角的余弦值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的不等式ax2-x-a+1>0,若a∈R,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中$\overrightarrow{a}$=(sinx+cosx,1),$\overrightarrow{b}$=(cosx,2),求函数f(x)的最大值和最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,∠A、∠B、∠C的对边分别为a,b,c,若∠A=60°,b=1,c=4,则$\frac{a+b+c}{sinA+sinB+sinC}$的值为(  )
A.$\frac{2\sqrt{39}}{3}$B.$\frac{26\sqrt{3}}{3}$C.$\frac{8\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解复数方程:x2+(4+i)x+$\frac{15}{4}$+2i=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某环境保护部门对某处的环境状况用“污染指数”来监测,据监测,该处的“污染指数”与附近污染源的强度成正比,且与距离成反比,比例系数分别为常数k1、k2(k1>0,k2>0),现已知相距36km的A、B两家化工厂(污染源)的污染强度分别为1和25,它们连线段上任意一点C处的污染指数y等于两化工厂对该处的“污染指数”之和,设AC=x(km).
(1)试将y表示为x的函数,并指出定义域;
(2)确定A、B连线段上何处的“污染指数”最小,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用数学归纳法证明等式1(n2-12)+2(n2-22)+…+n(n2-n2)=$\frac{1}{4}$n4-$\frac{1}{4}$n2对一切正整数n都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}中,公差d>0,等比数列{bn}中,b1>0,公比q>0且q≠1,若an-a1>logabn-logab1(n>1,n∈N,a>0,a≠1),求a的取值范围.

查看答案和解析>>

同步练习册答案