精英家教网 > 高中数学 > 题目详情
2.若复数z满足z(2-i)=i,则|z|=(  )
A.$\frac{1}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{3}$D.$\sqrt{5}$

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:z(2-i)=i,∴z(2-i)(2+i)=i(2+i),∴5z=2i-1.即z=$-\frac{1}{5}$+$\frac{2}{5}$i.
则|z|=$\sqrt{(-\frac{1}{5})^{2}+(\frac{2}{5})^{2}}$=$\frac{\sqrt{5}}{5}$.
故选:B.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.角α的终边经过的一点P的坐标是(-$\sqrt{3}$,a),则“|a|=1”的充要条件是(  )
A.$sinα=\frac{1}{2}$B.$cosα=-\frac{{\sqrt{3}}}{2}$C.$tanα=-\frac{{\sqrt{3}}}{3}$D.$|PO|=\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\frac{{e}^{x}-1}{x}$-ax-b(a、b∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为x+2y+4=0,求a、b的值;
(2)当b=1时,若总存在负实数m,使得当x∈(m,0)时,f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.我国古代算书《孙子算经》上有个有趣的问题“出门望九堤”:今有出门重九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?现在我们用右图所示的程序框图来解决这个问题,如果要使输出的结果为禽的数目,则在该框图中的判断框中应该填入的条件是(  )
A.S>10000?B.S<10000?C.n≥5D.n≤6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1所示,在等腰梯形ABCD中,$BE⊥AD,BC=3,AD=15,BE=3\sqrt{3}$.把△ABE沿BE折起,使得$AC=6\sqrt{2}$,得到四棱锥A-BCDE.如图2所示.

(1)求证:面ACE⊥面ABD;
(2)求平面ABE与平面ACD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知2a+2b=2c,则a+b-2c的最大值等于(  )
A.-2B.-1C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F为抛物线C:x2=2py(p>0)的焦点,过F的直线l与C交于A,B两点,M为AB中点,点M到x轴的距离为d,|AB|=2d+1.
(1)求p的值;
(2)过A,B分别作C的两条切线l1,l2,l1∩l2=N.请选择x,y轴中的一条,比较M,N到该轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.动点P从点A出发,按逆时针方向沿周长为1的平面图形运动一周,A,P两点间的距离y与动点P所走过的路程x的关系如图所示,那么动点P所走的图形可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{e^x},x≤0\\{x^2}-2x+a+1,x>0\end{array}$,若函数g(x)=f(x)-ax-1有4个零点,则实数a的取值范围为(0,1).

查看答案和解析>>

同步练习册答案