精英家教网 > 高中数学 > 题目详情
12.角α的终边经过的一点P的坐标是(-$\sqrt{3}$,a),则“|a|=1”的充要条件是(  )
A.$sinα=\frac{1}{2}$B.$cosα=-\frac{{\sqrt{3}}}{2}$C.$tanα=-\frac{{\sqrt{3}}}{3}$D.$|PO|=\sqrt{3}+1$

分析 cosα=$\frac{-\sqrt{3}}{\sqrt{(-\sqrt{3})^{2}+{a}^{2}}}$,可得“|a|=1”的充要条件.

解答 解:cosα=$\frac{-\sqrt{3}}{\sqrt{(-\sqrt{3})^{2}+{a}^{2}}}$,“|a|=1”的充要条件是cosα=-$\frac{\sqrt{3}}{2}$.
故选:B.

点评 本题考查了三角函数的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=($\frac{1}{2}$)x,g(x)=|log3(x-1)|,则方程f(x)-g(x)=0的实根个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点P(x,y)满足$|x|-1≤y≤\sqrt{1-{{|x|}^2}},O$为坐标原点,则使$|{PO}|≥\frac{{\sqrt{2}}}{2}$的概率为(  )
A.$\frac{π}{π+2}$B.$\frac{π}{π+4}$C.$\frac{2}{π+1}$D.$\frac{2}{π+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设(2-x)5=a0+a1x+a2x2+…+a5x5,则$\frac{{a}_{2}+{a}_{4}}{{a}_{1}+{a}_{3}}$的值为(  )
A.-$\frac{61}{60}$B.-$\frac{122}{121}$C.-$\frac{3}{4}$D.-$\frac{90}{121}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a>0,b>0,函数f(x)=|x+a|+|2x-b|的最小值为1.
(1)证明:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.棱长均为2的正四面体ABCD在平面α的一侧,Ω是ABCD在平面α内的正投影,设Ω的面积为S,则S的最大值为2,最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将函数y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数g(x)=sin2x的图象,当x1,x2满足时,|f(x1)-g(x2)|=2,${|{{x_1}-{x_2}}|_{min}}=\frac{π}{3}$,则φ的值为(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆O:x2+y2=1.圆O'与圆O关于直线x+y-2=0对称,则圆O'的方程是(x-2)2+(y-2)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数z满足z(2-i)=i,则|z|=(  )
A.$\frac{1}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{3}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案