精英家教网 > 高中数学 > 题目详情
4.将函数y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数g(x)=sin2x的图象,当x1,x2满足时,|f(x1)-g(x2)|=2,${|{{x_1}-{x_2}}|_{min}}=\frac{π}{3}$,则φ的值为(  )
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可;也可结合正弦函数的图象和性质可得|x1-x2|min=$\frac{π}{2}$-φ=$\frac{π}{3}$,从而解得φ的值.

解答 解:将函数y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数g(x)=sin2x的图象,故f(x)=sin(2x-2φ),
当x1,x2满足时|f(x1)-g(x2)|=2 时,${|{{x_1}-{x_2}}|_{min}}=\frac{π}{3}$,
由题意可得:有|x1-x2|min=$\frac{π}{2}$-φ=$\frac{π}{3}$,
结合范围0<φ<$\frac{π}{2}$,解得:φ=$\frac{π}{6}$,
故选:D.

点评 本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖,有一定难度.其中,判断有|x1-x2|min=$\frac{T}{2}$-φ=$\frac{π}{2}$-φ,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知cos(x-$\frac{π}{3}$)=$\frac{1}{3}$,则cos(2x-$\frac{5π}{3}$)+sin2($\frac{π}{3}$-x)的值为(  )
A.-$\frac{1}{9}$B.$\frac{1}{9}$C.$\frac{5}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a、b∈R,则“ab=1”是“直线“ax+y-l=0和直线x+by-1=0平行”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.角α的终边经过的一点P的坐标是(-$\sqrt{3}$,a),则“|a|=1”的充要条件是(  )
A.$sinα=\frac{1}{2}$B.$cosα=-\frac{{\sqrt{3}}}{2}$C.$tanα=-\frac{{\sqrt{3}}}{3}$D.$|PO|=\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某服装销售公司进行关于消费档次的调查,根据每人月均服装消费额将消费档次分为0-500元;500-1000元;1000-1500元;1500-2000元四个档次,针对A,B两类人群各抽取100人的样本进行统计分析,各档次人数统计结果如下表所示:
档次
人群
0~
500元
500~
1000元
1000~
1500元
1500~
2000元
A类20502010
B类50301010
月均服装消费额不超过1000元的人群视为中低消费人群,超过1000元的视为中高收入人群.
(Ⅰ)从A类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从A,B两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计A,B两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出40个数:1,2,4,7,11,16,…,要计算这40个数的和,如图给出了该问题的程序框图,那么框图①处和执行框②处可分别填入(  )
A.i≤40?;p=p+i-1B.i≤41?;p=p+i-1C.i≤41?;p=p+iD.i≤40?;p=p+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了研究学生的数学核素养与抽象(能力指标x)、推理(能力指标y)、建模(能力指标z)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标w=x+y+z的值评定学生的数学核心素养;若w≥7,则数学核心素养为一级;若5≤w≤6,则数学核心素养为二级;若3≤w≤4,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:
学生编号A1A2A3A4A5A6A7A8A9A10
(x,y,z)(2,2,3)(3,2,3)(3,3,3)(1,2,2)(2,3,2)(2,3,3)(2,2,2)(2,3,3)(2,1,1)(2,2,2)
(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为a,从数学核心素养等级不是一级的学生中任取一人,其综合指标为b,记随机变量X=a-b,求随机变量X的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\frac{{e}^{x}-1}{x}$-ax-b(a、b∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为x+2y+4=0,求a、b的值;
(2)当b=1时,若总存在负实数m,使得当x∈(m,0)时,f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F为抛物线C:x2=2py(p>0)的焦点,过F的直线l与C交于A,B两点,M为AB中点,点M到x轴的距离为d,|AB|=2d+1.
(1)求p的值;
(2)过A,B分别作C的两条切线l1,l2,l1∩l2=N.请选择x,y轴中的一条,比较M,N到该轴的距离.

查看答案和解析>>

同步练习册答案