精英家教网 > 高中数学 > 题目详情
10.先做函数f(x)=$\left\{\begin{array}{l}{{x}^{2},-1≤x≤1}\\{x,1≤x≤3}\\{3,3≤x≤5}\end{array}\right.$的图象,再求${∫}_{-1}^{5}$f(x)dx.

分析 根据描点画出函数f(x)的图象,${∫}_{-1}^{5}$f(x)dx=${∫}_{-1}^{1}$x2dx+${∫}_{1}^{3}$xdx+${∫}_{3}^{5}$3dx,根据定积分的计算法则计算即可.

解答 解:图象如图所示,
${∫}_{-1}^{5}$f(x)dx=${∫}_{-1}^{1}$x2dx+${∫}_{1}^{3}$xdx+${∫}_{3}^{5}$3dx=$\frac{1}{3}$x3|${\;}_{-1}^{1}$+$\frac{1}{2}$x2|${\;}_{1}^{3}$+3x|${\;}_{3}^{5}$=$\frac{1}{3}$(1+1)+$\frac{1}{2}$(9-1)+3×(5-3)=$\frac{32}{3}$

点评 本题考查了函数的图象的画法和定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某校有教职员工150人,为了丰富教工的课余生活,每天下午4:00~5:00同时开放健身房和娱乐室,要求所有教工每天必须参加一个活动.据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知关于x的不等式x2-ax+b>0(a,b∈R)的解集为{x|x>2或x<1}.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=a$\sqrt{x-1}$+b$\sqrt{2-x}$的最大值,以及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2为椭圆$\frac{x^2}{4}+{y^2}$=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则$\frac{{|{P{F_2}}|}}{{|{P{F_1}}|}}$的值为(  )
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{7}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在长方体ABCD-A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为114.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相反,且|$\overrightarrow{a}$|=3与|$\overrightarrow{b}$|=4,求|2$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是(  )
A.$({1,1+\frac{{\sqrt{2}}}{2}})$B.$({1+\frac{{\sqrt{2}}}{2},+∞})$C.$({1,1+\sqrt{2}})$D.$({1+\sqrt{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以下四个命题中,其中真命题的个数为(  )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R使得x2+x+1<0.则¬p:?x∈R均有x2+x+1≥0;
③两个随机变量的线性相关性越强,则相关系数就越接近于1
④命题p:“x>3“是“x>5“的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.知a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则数列{an}的通项为an=(  )
A.$\frac{1}{2n-1}$B.2n-1C.$\frac{1}{3n-2}$D.3n-2

查看答案和解析>>

同步练习册答案