精英家教网 > 高中数学 > 题目详情
1.已知关于x的不等式x2-ax+b>0(a,b∈R)的解集为{x|x>2或x<1}.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=a$\sqrt{x-1}$+b$\sqrt{2-x}$的最大值,以及取得最大值时x的值.

分析 (Ⅰ)通过不等式的解集可知方程x2-ax+b=0的两个根为1和2,计算即可;
(Ⅱ)通过(Ⅰ),利用柯西不等式即得结论.

解答 解:(Ⅰ)依题意,方程x2-ax+b=0的两个根为1和2,
∴$\left\{{\begin{array}{l}{1+2=a}\\{1×2=b}\end{array}}\right.$,∴$\left\{{\begin{array}{l}{a=3}\\{b=2}\end{array}}\right.$;
(Ⅱ)由(Ⅰ)知:$f(x)=3\sqrt{x-1}+2\sqrt{2-x}$(1≤x≤2),
由柯西不等式得,${f^2}(x)={({3\sqrt{x-1}+2\sqrt{2-x}})^2}$≤(32+22)(x-1+2-x)=13,
∴$f(x)≤\sqrt{13}$(当且仅当$\frac{3}{2}=\frac{{\sqrt{x-1}}}{{\sqrt{2-x}}}$,即$x=\frac{22}{13}$时,取得等号),
∴当$x=\frac{22}{13}$时,f(x)取得最大值$\sqrt{13}$.

点评 本题是一道关于不等式方程、函数最值、柯西不等式的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{b}$|=4,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,若对每一个确定的$\overrightarrow b$,|$\overrightarrow{c}$|的最大值和最小值分别为m,n,则m-n的值为(  )
A.随$|\overrightarrow a|$增大而增大B.随$|\overrightarrow a|$增大而减小C.是2D.是4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图程序框图,若实数a的值为5,则输出k的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,满足Sn=$\frac{4}{3}$an-$\frac{1}{3}×$2n+1+$\frac{2}{3}$,n∈N*
(Ⅰ)求证数列{an+2n}是等比数列,并求数列{an}的通项an
(Ⅱ)设T(n)=$\frac{{2}^{n}}{{S}_{n}}$,n∈N*,证明:$\sum_{i=1}^{n}$T(i)<$\frac{3}{2}$;
(Ⅲ)设R(n)=$\sum_{i=1}^{n}$$\frac{1}{i}$,n≥2,证明:$\frac{n}{2}$<R($\frac{{a}_{n}}{{2}^{n}}$)<n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某四天的用电量与当天气温,列表如下:
由表中数据得到回归直线方程$\widehat{y}$=-2x+a.据此预测当气温为-4°C时,用电量为68(单位:度).
气温(x℃)181310-1
用电量(度)24343864

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)满足:x≥4,则f(x)=2x;当x<4时f(x)=f(x+1),则f(2+log${\;}_{\frac{1}{2}}$3)=$\frac{64}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且$\overrightarrow{BA}$•$\overrightarrow{BC}$=18,则△ABC的面积是3$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.先做函数f(x)=$\left\{\begin{array}{l}{{x}^{2},-1≤x≤1}\\{x,1≤x≤3}\\{3,3≤x≤5}\end{array}\right.$的图象,再求${∫}_{-1}^{5}$f(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)=cos2x-$\sqrt{3}$sin2x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=-cos2x-$\sqrt{3}$sin2x的图象,则φ的值可以为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案