精英家教网 > 高中数学 > 题目详情
12.已知圆心为C的圆经过点A(1,-5)和B(2,-2),且圆心C在直线l:x-y+1=0,求圆心为C的圆的标准方程.

分析 设所求的圆的标准方程为(x-a)2+(y-b)2=r2,将点A(1,-5)和B(2,-2)代入,结合圆心C在直线l:x-y+1=0,联立方程组求得a、b、r的值,可得圆的标准方程.

解答 解:设所求的圆的标准方程为(x-a)2+(y-b)2=r2
将点A(1,-5)和B(2,-2)代入得$\left\{{\begin{array}{l}{(1-a{)^2}+{{(-5-b)}^2}={r^2}}\\{{{(2-a)}^2}+{{(-2-b)}^2}={r^2}}\end{array}}\right.$,
又圆心在l:x-y+1=0上,所以a-b+1=0.
联立方程组,解得a=-3,b=-2,r=5.
所以所求的圆的标准方程为(x+3)2+(y+2)2=25.

点评 本题主要考查用待定系数法求圆的标准方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A、B、C所对的边长分别为a、b、c,且asinAsinB+bcos2A=$\sqrt{2}$a,则$\frac{b}{a}$的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设数列{an}满足a1=0,an+1=lg(n+1+an),n∈N*,若a2016∈(lgk,lg(k+1)),则整数k=2019.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,则该几何体的体积是(  )
A.2B.6C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设x,y>0,记A=min(x,$\frac{y}{{x}^{2}+{y}^{2}}$),求A的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{\sqrt{2}sin(x-\frac{π}{4})+2}{2si{n}^{2}\frac{x}{2}+1}$的最大值为M,最小值为m,则M+m等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆的方程为x2+y2-2x-2my+2m2-4m+1=0(m∈R).
(1)当该圆的半径最长时,求m的值;
(2)在满足(1)的条件下,若该圆的圆周上到直线l:2kx-2y+4+$\sqrt{3}$-3k=0的距离等于1的点有且只有3个,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边分别为a,b,c,若a+b=2,c=1,C=$\frac{π}{3}$,则a=(  )
A.$\frac{3}{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°.
(1)若$\overrightarrow{a}$,$\overrightarrow{b}$都是单位向量,求|2$\overrightarrow{a}$+$\overrightarrow{b}$|;
(2)若|$\overrightarrow{a}$|=2,$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-5$\overrightarrow{b}$垂足,求|$\overrightarrow{b}$|.

查看答案和解析>>

同步练习册答案