精英家教网 > 高中数学 > 题目详情
6.已知函数$y=\frac{1}{3}{x^3}+b{x^2}+(b+2)x+3$在R上单调递增,则b的取值范围为(  )
A.[0,1]B.[1,2]C.[-1,2]D.[1,+∞]

分析 根据函数单调性和导数之间的关系,转化为f′x)≥0恒成立,即可得到结论.

解答 解:∵函数y=$\frac{1}{3}$x3+bx2+(b+2)x+3,
∴f′(x)=x2+2bx+b+2,
∵函数y=$\frac{1}{3}$x3+bx2+(b+2)x+3在R上是增函数,
∴f′(x)=x2+2bx+b+2≥0恒成立,
∴判别式△=4b2-4(b+2)≤0,
∴b2-b-2≤0,
即-1≤b≤2,
故选:C.

点评 本题考查了函数的单调性,考查导数的应用,将函数单调性转化为f′x)≥0恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.直线ax+by+c=0与圆x2+y2=16相交于两点M、N.若c2=a2+b2,则$\overrightarrow{OM}•\overrightarrow{ON}$(O为坐标原点)等于-14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{a+lnx}{x}$在点(e,f(e))处切线与直线e2x-y+e=0垂直.(注:e为自然对数的底数)
(1)求a的值;
(2)若函数f(x)在区间(m,m+1)上存在极值,求实数m的取值范围;
(3)求证:当x>1时,f(x)>$\frac{2}{x+1}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的方程$\sqrt{3}sin2x+cos2x=k+1$在$[0,\frac{π}{2}]$内有实数根,则k的取值范是(  )
A.(-3,1)B.(0,2)C.[0,1]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.给出30个数:1,2,4,7,…其规律是:第一个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),
(1)请在图中判断框内①处和执行框中的②处填上合适的语句,使之能完成该题算法功能;
(2)根据程序框图写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求证$\frac{\frac{1}{sin(-α)}-sin(180°+α)}{\frac{1}{cos(540°-α)}+cos(360°-α)}$=$\frac{1}{{tan}^{3}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$f(x)=\frac{x}{1+x},x≥0$,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,归纳猜想f2018(x)的表达式为f2018(x)=$\frac{x}{1+2018x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.为了解社区居民的家庭收入与年支出的关系,随机抽查5户家庭得如下数据表:
收入x(万元)8.28.610.011.311.9
支出y(万元)6.27.58.08.59.8
根据上表可得回归直线方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=0.76$,$\widehata=\overline y-\widehatb\overline x$,据此估计,该社区一户收入20万元家庭的支出是(  )
A.15.6万元B.15.8万元C.16万元D.16.2万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f′(3)=4,则 $\underset{lim}{h→0}$$\frac{f(a-h)-f(a)}{2h}$为(  )
A.-1B.-2C.-3D.1

查看答案和解析>>

同步练习册答案