精英家教网 > 高中数学 > 题目详情
6.设函数f(x)=alnx+b(x2-3x+2),其中a,b∈R.
(I)若a=b,讨论f(x)极值(用a表示);
(Ⅱ)当a=1,b=$-\frac{1}{2}$,函数g(x)=2f(x)-(λ+3)x+2,若x1,x2(x1≠x2)满足g(x1)=g(x2)且x1+x2=2x0,证明:g′(x0)≠0.

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的极值即可;
(Ⅱ)求出函数的导数,假设结论不成立,得到ln$\frac{{x}_{1}}{{x}_{2}}$=$\frac{2\frac{{x}_{1}}{{x}_{2}}-2}{\frac{{x}_{1}}{{x}_{2}}+1}$,令t=$\frac{{x}_{1}}{{x}_{2}}$,构造函数u(t)=lnt-$\frac{2t-2}{t+1}$(0<t<1),根据函数的单调性判断即可.

解答 解:(Ⅰ)函数f(x)的定义域为(0,+∞),∵a=b∴f(x)=alnx+a(x2-3x+2)
∴f′(x)=$\frac{a}{x}$+a(2x-3),∴f′(x)=$\frac{a}{x}$+a(2x-3)=$\frac{a(x-1)(2x-1)}{x}$,
①当a=0时,f(x)=0,所以函数f(x)无极值;
②当a>0时,f(x)在(0,$\frac{1}{2}$)和(1,+∞)单调递增,在($\frac{1}{2}$,1)单调递减,
∴f(x)的极大值为f($\frac{1}{2}$)=-aln2+$\frac{3}{4}$a,f(x)的极小值为f(1)=0;
③当a<0时,f(x)在(0,$\frac{1}{2}$)和(1,+∞)单调递减,在($\frac{1}{2}$,1)单调递增,
∴f(x)的极小值为f($\frac{1}{2}$)=-aln2+$\frac{3}{4}$a,f(x)的极大值为f(1)=0;
综上所述:
当a=0时,函数f(x)无极值;
当a>0时,函数f(x)的极大值为-alna,函数f(x)的极小值为0;
当a<0时,函数f(x)的极小值为-alna,函数f(x)的极大值为0.…(5分)
(Ⅱ)g(x)=2lnx-x2-λx,g′(x)=$\frac{2}{x}$-2x-λ,
假设结论不成立,
则有$\left\{\begin{array}{l}{2l{nx}_{1}{{-x}_{1}}^{2}-{λx}_{1}=2l{nx}_{2}{{-x}_{2}}^{2}-{λx}_{2}①}\\{{x}_{1}{+x}_{2}={2x}_{0},②}\\{\frac{2}{{x}_{0}}-{2x}_{0}-λ=0,③}\end{array}\right.$,
由①,得$2ln\frac{x_1}{x_2}-({x_1}^2-{x_2}^2)-λ({x_1}-{x_2})=0$,∴$λ=2\frac{{ln\frac{x_1}{x_2}}}{{{x_1}-{x_2}}}-2{x_0}$,
由③,得$λ=\frac{2}{x_0}-2{x_0}$,∴$\frac{{ln\frac{x_1}{x_2}}}{{{x_1}-{x_2}}}=\frac{1}{x_0}$,即ln$\frac{{x}_{1}}{{x}_{2}}$=$\frac{2\frac{{x}_{1}}{{x}_{2}}-2}{\frac{{x}_{1}}{{x}_{2}}+1}$.④
令t=$\frac{{x}_{1}}{{x}_{2}}$,不妨设x1<x2,u(t)=lnt-$\frac{2t-2}{t+1}$(0<t<1),则u′(t)=$\frac{{(t-1)}^{2}}{{t(t+1)}^{2}}$>0,
∴u(t)在0<t<1上增函数,u(t)<u(1)=0,∴④式不成立,与假设矛盾.
∴g′(x0)≠0.                                             …(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\left\{\begin{array}{l}{(2a-4)x-a(x<1)}\\{lo{g}_{a}x(x≥1)}\end{array}\right.$是R上的增函数,则a的取值范围是(2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x||x|≤2},集合B={x|x<a},如果A∩B=∅,那么a的范围是(  )
A.a=2B.a≤2C.a=--2D.a≤--2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面直角坐标系xOy中,已知点A(2,1),B(4,-2),C(7,0).
(1)证明:△ABC是等腰直角三角形;
(2)若E为BC的中点,试在线段AC上确定点D及确定实数t,使得$\overrightarrow{OB}$+t$\overrightarrow{OD}$=$\overrightarrow{OE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的极值点与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b在区间$[{0,\sqrt{3}}]$上取值,则函数$f(x)=\frac{1}{3}a{x^3}+b{x^2}+\frac{1}{4}ax$在R上有两个相异极值点的概率是(  )
A.$\frac{1}{4}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求矩阵M=$[{\begin{array}{l}0&0\\ 0&1\end{array}}]$的特征值和特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x3-2tx2+t2x在x=2处有极小值,则实数t的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an}中,a2+a8=10,则该数列前9项和S9等于(  )
A.18B.27C.36D.45

查看答案和解析>>

同步练习册答案