精英家教网 > 高中数学 > 题目详情
8.已知数列{an}与{bn}满足:a1+a2+a3+…+an=log2bn(n∈N*).若{an}为等差数列,且a1=2,b3=64b2
(Ⅰ)求an与bn
(Ⅱ)设cn═(an+n+1)•2${\;}^{{a}_{n}-2}$,求数列{cn}的前n项和Tn

分析 (Ⅰ)通过a3=$lo{g}_{2}\frac{{b}_{3}}{{b}_{2}}$及a1=2可得d=2,进而可得an=2n,利用a1+a2+a3+…+an=log2bn可得bn=2n(n+1)
(Ⅱ)通过(I)及cn═(an+n+1)•2${\;}^{{a}_{n}-2}$可得Tn、4Tn的表达式,利用错位相减法计算即得结论.

解答 解:(Ⅰ)由已知可得:a1+a2+a3=log2b3,a1+a2=log2b2
两式相减可得:a3=$lo{g}_{2}\frac{{b}_{3}}{{b}_{2}}$=log264=6,
∵a1=2,∴d=2,∴an=2n,
∵a1+a2+a3+…+an=$2•\frac{n(n+1)}{2}$=n(n+1)=log2bn
∴bn=2n(n+1)
(Ⅱ)由题意cn═(an+n+1)•2${\;}^{{a}_{n}-2}$=(3n+1)4n-1
∴Tn=4+7•4+10•42+…+(3n+1)•4n-1
4Tn=4•4+7•42+10•43+…+(3n+1)•4n
两式相减得:-3Tn=4+3•4+3•42+…+3•4n-1-(3n+1)•4n
=4+3(4+42+…+4n-1)-(3n+1)•4n
=4+3•$\frac{4(1-{4}^{n-1})}{1-3}$-(3n+1)•4n
整理得:Tn=n•4n(n∈N*).

点评 本题考查求数列的通项及前n项和公式,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设n∈N*,(x+3)n展开式的所有项系数和为256,则其二项式系数的最大值为6.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.袋中有5个球,其中有彩色球2个.甲、乙二人先后依次从袋中取球,每次取后不放回,规定先取出彩色球者获胜.则甲获胜的概率为$\frac{3}{5}$.(以整数比作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.二次函数y=kx2(x>0)的图象在点(an,an2)处的切线与x轴交点的横坐标为an+1,n为正整数,a1=$\frac{1}{3}$,若数列{an}的前n项和为Sn,则S5=(  )
A.$\frac{3}{2}[{1-{{({\frac{1}{3}})}^5}}]$B.$\frac{1}{3}[{1-{{({\frac{1}{3}})}^5}}]$C.$\frac{2}{3}[{1-{{({\frac{1}{2}})}^5}}]$D.$\frac{3}{2}[{1-{{({\frac{1}{2}})}^5}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(2sin$\frac{A}{2}$,cosA),$\overrightarrow{n}$=(1-2sin2$\frac{A}{4}$,-$\sqrt{15}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(Ⅰ)求角A的余弦值;
(Ⅱ)若a=$\sqrt{6}$,求△ABC的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,若AB=1,AC=3,$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{3}{2}$,则S△ABC=$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2$\sqrt{2}$,PA=2,$\overrightarrow{PE}$=2$\overrightarrow{EC}$.
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)若直线PD与平面PBC所成角为$\frac{π}{6}$,求二面角A-PB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{4}$x2+cosx的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知不存在整数x使不等式(ax-a2-4)(x-4)<0成立,则实数a的取值范围为(  )
A.(0,+∞)B.(0,2]C.[1,2]D.[1,4]

查看答案和解析>>

同步练习册答案