精英家教网 > 高中数学 > 题目详情
18.已知二次函数f(x)=abx2-(b+2a)x+1有最小值f(2),当a,b为何值时,f(2)有最大值,并求出f(2)的最大值.

分析 求出函数的对称轴,得到2a+b=ab,表示出f(2),根据基本不等式的性质求出f(2)的最大值即可.

解答 解:由题意得:对称轴x=$\frac{2a+b}{2ab}$=2,
∴2a+b=4ab,
∵函数f(x)有最小值,∴ab>0,
∴$\frac{1}{2b}$+$\frac{1}{4a}$=1,∴a>0,b>0,
∴f(2)=1-(2a+b),
而2a+b=(2a+b)($\frac{1}{2b}$+$\frac{1}{4a}$)=1+$\frac{a}{b}$+$\frac{b}{4a}$≥2,
当且仅当b=2a=1时“=”成立,
∴f(2)是最大值是1-2=-1.

点评 不同考查了二次函数的性质,考查基本不等式的性质以及“乘1法”的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在等差数列{an}中,Sn为其前n项的和,已知a1+a3=22,S5=45.
(1)求an,Sn;                
(2)设数列{Sn}中最大项为Sk,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设公差不为零的等差数列{an}的前5项的和为55,且a2,$\sqrt{{a_6}+{a_7}},{a_4}$-9成等比数列.
(1)求数列{an}的通项公式.
(2)设数列bn=$\frac{1}{{({a_n}-6)({a_n}-4)}}$,求证:数列{bn}的前n项和Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图是甲、乙两位同学在5次数学测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z1,z2在复平面内对应的点的坐标分别为(0,2)(1,-1),z=$\frac{{z}_{1}}{\overline{{z}_{2}}}$,则复数z的实部与虚部之和为(  )
A.$\sqrt{2}$B.1+iC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$\frac{7}{16}$-$\frac{7}{8}$sin215°的值为(  )
A.$\frac{7}{32}$B.$\frac{7\sqrt{3}}{32}$C.$\frac{7}{16}$D.$\frac{7\sqrt{3}}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(-8)等于(  )
A.-3-aB.3+aC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tanα=$\sqrt{2}$,则cosαsinα=(  )
A.$\frac{\sqrt{2}}{3}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{1}{3}$D.±$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点P是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上一点,F1、F2是椭圆的两个焦点,若|PF1|=4,则|PF2|=2.

查看答案和解析>>

同步练习册答案