分析 (1)利用正弦定理与和差公式即可得出.
(2)利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.
解答 解:(1)ctanC=$\sqrt{3}$(acosB+bcosA),
由正弦定理可得:sinCtanC=$\sqrt{3}$(sinAcosB+sinBcosA)=$\sqrt{3}$sin(A+B)=$\sqrt{3}$sinC.
∴tanC=$\sqrt{3}$,C∈(0,π).
∴C=$\frac{π}{3}$.
(2)由余弦定理可得:12=c2=a2+b2-2abcosC≥2ab-ab=ab,
可得ab≤12,当且仅当a=2$\sqrt{3}$时取等号.
∴△ABC面积的最大值=$\frac{1}{2}×12×sin\frac{π}{3}$=3$\sqrt{3}$.
点评 本题考查了正弦定理余弦定理、三角形面积计算公式、和差公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=f(x)在区间(0,0.4)上递减 | B. | y=f(x)在区间(0.35,1)上递减 | ||
| C. | y=f(x)的最小值为f(0.4) | D. | y=f(x)在(0.3,0.4)上有最小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | (-7,-4] | C. | (-7,4] | D. | [-4,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{\sqrt{3}}{3}$x | B. | y=±$\sqrt{3}$x | C. | y=±2x | D. | y=±$\sqrt{5}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=-1,b=-2 | B. | a=-1,b=2 | C. | a=1,b=2 | D. | a=1,b=-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com