精英家教网 > 高中数学 > 题目详情
14.已知sin(α-β)cosα-cos(β-α)sinα=$\frac{3}{5}$,β是第三象限角,则tan(β+$\frac{π}{4}$)=7.

分析 利用两角和差的正弦公式进行化简,然后利用两角和差的正切公式进行计算即可.

解答 解:由sin(α-β)cosα-cos(β-α)sinα=$\frac{3}{5}$,
得sin(α-β-α)=sin(-β)=$\frac{3}{5}$,
∴sinβ=-$\frac{3}{5}$,
∵β是第三象限角,
∴cosβ=-$\frac{4}{5}$,tanβ=$\frac{3}{4}$,
则tan(β+$\frac{π}{4}$)=$\frac{tanβ+1}{1-tanβ}$=$\frac{\frac{3}{4}+1}{1-\frac{3}{4}}$=7,
故答案为:7;

点评 本题主要考查三角函数值的计算,利用两角和差的正弦公式和正切公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.圆心为(1,1)且过原点的圆的方程是(  )
A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知F1、F2分别为椭圆 $\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)的左、右焦点,其离心率e=$\frac{1}{2}$.且a+c=3,
(1)求椭圆的标准方程;
(2)设A、B分别为椭圆的上下顶点,O为原点,过F2作直线l与椭圆交于C、D两点,并与y轴交于点P(异于A、B、O点),直线AC与直线BD交于点Q.则$\overrightarrow{OP}•\overrightarrow{OQ}$是否为定值,若是,请证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.利用图象解不等式:-1<tan2x≤$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为 $\frac{{\sqrt{2}}}{2}$,其左、右焦点分别是F1,F2,过点F1的直线l交椭圆C于E,G两点,且△EGF2的周长为4$\sqrt{2}$
(Ⅰ)求椭圆C的方程;     
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,设P为椭圆上一点,且满足 $\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O为坐标原点),当$|{\overrightarrow{PA}-\overrightarrow{PB}}|<\frac{{2\sqrt{5}}}{3}$时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.乒乓球比赛用球的直径为40.00mm,一种乒乓球筒高200mm,现有4个乒乓球筒,要将5个比赛用球放到4个乒乓球筒里(乒乓球筒可以空着),共有多少种不同的放法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥B-AA1C1C中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-C的余弦值; 
(Ⅲ)证明:在线段上BC1存在点D,使得AD⊥A1B,并求$\frac{BD}{B{C}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x2-ax+b.
(Ⅰ)讨论函数f(sinx)在(-$\frac{π}{2}$,$\frac{π}{2}$)内的单调性并判断有无极值,有极值时求出最值;
(Ⅱ)记f0(x)=x2-a0x+b0,求函数|f(sinx)-f0(sinx)|在[-$\frac{π}{2}$,$\frac{π}{2}$]上的最大值D;
(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b-$\frac{{a}^{2}}{4}$满足条件D≤1时的最大值.

查看答案和解析>>

同步练习册答案