精英家教网 > 高中数学 > 题目详情
5.已知f(x)=|2x-1|+ax+2.
( I)当a=1时,解不等式f(x)≤4;
(Ⅱ)若函数f(x)有最小值,求实数a的取值范围.

分析 (Ⅰ)若a=-1,不等式f(x)≤5,即为|3x-1|≤x+2,去掉绝对值解不等式f(x)≤5;
(Ⅱ)分析知函数f(x)有最小值的充要条件为$\left\{\begin{array}{l}{a-2≤0}\\{a+2≥0}\end{array}\right.$,即可求实数a的取值范围.

解答 解:(Ⅰ)a=1时,f(x)=|2x-1|+x+2,
x≤$\frac{1}{2}$时,f(x)≤4可化为1-2x+x+x≤4,解得:-1≤x≤$\frac{1}{2}$,
x>$\frac{1}{2}$时,f(x)≤4可化为2x-1+x+2≤4,解得:$\frac{1}{2}$<x≤1,
综上,不等式的解集是{x|-1≤x≤1};
(Ⅱ)f(x)=|2x-1|+ax+2=$\left\{\begin{array}{l}{(a-2)x+3,x<\frac{1}{2}}\\{(a+2)x+1,x≥\frac{1}{2}}\end{array}\right.$,
若函数f(x)有最小值,则$\left\{\begin{array}{l}{a-2≤0}\\{a+2≥0}\end{array}\right.$,
解得:-2≤a≤2.

点评 本题考查不等式的解法,考查绝对值的几何意义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.
(Ⅰ)天气预报说,在今后的三天中,每一天降雨的概率均为40%,该营销部门通过设计模拟实验的方法研究三天中恰有两天降雨的概率,利用计算机产生0到9之间取整数值的随机数,并用1,2,3,4,表示下雨,其余6个数字表示不下雨,产生了20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
求由随机模拟的方法得到的概率值;
(Ⅱ)经过数据分析,一天内降雨量的大小x(单位:毫米)与其出售的快餐份数y成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:
降雨量(毫米)12345
快餐数(份)5085115140160
试建立y关于x的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为6毫米时需要准备的快餐份数.(结果四舍五入保留整数)
附注:回归方程$\widehaty=\widehatbx+\widehata$中斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{({x_i}}-\overline x{)^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABC中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BCPA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q为PD的中点.
(Ⅰ)证明:CQ∥平面PAB;
(Ⅱ)求三棱锥Q-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=-2x2+1的单调递增区间为(  )
A.(-∞,0]B.(0,+∞)C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆x2+y2-4x+4y-1=0与圆x2+y2+2x-4y+1=0的位置关系是(  )
A.相离B.相交C.内切D.外切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某校开设了数学选修课程,在选修《数学史选讲》的学生中,男生和女生分别有56人和42人.现用分层抽样的方法从中抽出一个容量为28的样本,则应抽取的女生人数是(  )
A.18B.16C.14D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知P是圆x2+y2=1上的一动点,AB是圆(x-5)2+(y-12)2=4的一条动弦(A,B是直径的两个端点),则$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围是[140,192].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若数列{an}满足a2-a1<a3-a2<a4-a3<…<an+1-an,则称数列{an}为“差递增”数列.若数列{an}是“差递增”数列,且其通项an与其前n项和Sn满足3Sn=1+λ-2an(n∈N*),则λ的取值范围是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设各项均为正数的数列{an}的前n项和为Sn,且满足an2-2Sn=2-an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3}{{{a_{2n}}{a_{2n+2}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案