分析 (I)利用正弦定理与余弦定理、倍角公式即可得出;
(II)利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.
解答 解:(Ⅰ)由正弦定理得:2(a2+b2-c2)=3ab,…(2分)
∴由余弦定理得:$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{3}{4}$,…(4 分)
∴${sin^2}\frac{A+B}{2}={cos^2}\frac{C}{2}=\frac{1+cosC}{2}=\frac{7}{8}$…(7分)
(Ⅱ)若c=2,则由(Ⅰ)知:8=2(a2+b2)-3ab≥4ab-3ab=ab,.(9分)
又$sinC=\frac{{\sqrt{7}}}{4}$,…(11分)
∴${S_{△ABC}}=\frac{1}{2}absinC≤\frac{1}{2}×8×\frac{{\sqrt{7}}}{4}=\sqrt{7}$,
即△ABC面积的最大值为$\sqrt{7}$…(14分)
点评 本题考查了正正弦定理与余弦定理、倍角公式、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x+ex | B. | $y=x+\frac{1}{x}$ | C. | $y={2^x}+\frac{1}{2^x}$ | D. | $y=\sqrt{1+{x^2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{2}$ | B. | $6\sqrt{2}$ | C. | $8\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com