精英家教网 > 高中数学 > 题目详情
3.已知命题p:函数f(x)=ln(-x2+2x+3)的定义域为(-1,3);命题q:函数f(x)=ln(-x2+2x+3)的单调递减区间为[1,+∞).那么命题p的真假为真,p∧q的真假为假(填“真”或“假”).

分析 命题p:由-x2+2x+3>0,解出即可得出函数f(x)=ln(-x2+2x+3)的定义域;
命题q:函数f(x)=ln(-x2+2x+3)的定义域为(-1,3),由函数y=-x2+2x+3=-(x-1)2+4,利用二次函数与对数函数的单调性即可得出.

解答 解:命题p:由-x2+2x+3>0,解得-1<x<3,可得:函数f(x)=ln(-x2+2x+3)的定义域为(-1,3);
命题q:函数f(x)=ln(-x2+2x+3)的定义域为(-1,3),由函数y=-x2+2x+3=-(x-1)2+4,∴函数f(x)=ln(-x2+2x+3)的单调递减区间为(1,3),因此是假命题.
那么命题p为真命题,p∧q为假命题.
故答案分别为:真;假.

点评 本题考查了函数的定义域及其单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若(5x+4)10=a0+a1x+…+a9x9+a10x10,则a1-a2+a3-a4+…+a9-a10=410-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x、y满足$\left\{\begin{array}{l}{x≥1}\\{y≤2}\\{x-y≤0}\end{array}\right.$,则目标函数z=x+|2x-y-1|的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2cosπx•cos2$\frac{φ}{2}$+sin[(x+1)π]•sinφ-cosπx(0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求φ的值及图中x0的值:
(2)将函数f(x)的图象上的各点向左平移$\frac{1}{6}$个单位长度.再将所得图象上各点的横坐标不变.纵坐标伸长到原来的$\sqrt{3}$倍.得到函数g(x)的图象.求函数g(x)在区间[-$\frac{1}{2}$,$\frac{1}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.变量x,y满足条件$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,求z=2x-3y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若实数a=20.1,b=log32,c=log0.34,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知m∈R,则“m≠5”是“曲线$\frac{x^2}{m}+\frac{y^2}{5}=1$为椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合M={x|x2-2x<0},集合N={x|x>1},则集合M∩(∁UN)=(  )
A.{x|0<x<1}B.{x|0<x≤1}C.{x|0<x<2}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.实系数一元二次方程x2+ax+b=0有一个虚数根的模为2,则a的取值范围是(-4,4).

查看答案和解析>>

同步练习册答案