分析 在给出的二项式中分别取x=0、1、-1求得a0、a0+a1+a2+a3+a4+…+a9+a10、a0-a1+a2-a3+a4+…-a9+a10的值,进一步求出-(a2+a4+…+a10)与a1+a3+…+a9的值,作和求得a1-a2+a3-a4+…+a9-a10的值.
解答 解:在(5x+4)10=a0+a1x+…+a9x9+a10x10中,
取x=0,得${a}_{0}={4}^{10}$,
取x=1,得a0+a1+a2+a3+a4+…+a9+a10=910 ①,
取x=-1,得a0-a1+a2-a3+a4+…-a9+a10=1 ②,
①②两式作和得,${a}_{0}+{a}_{2}+…+{a}_{10}=\frac{{9}^{10}+1}{2}$,
∴${a}_{2}+{a}_{4}+…+{a}_{10}=\frac{{9}^{10}+1}{2}-{4}^{10}$,
∴-(a2+a4+…+a10)=${4}^{10}-\frac{{9}^{10}+1}{2}$,
①②两式作差得,${a}_{1}+{a}_{3}+…+{a}_{9}=\frac{{9}^{10}-1}{2}$,
∴a1-a2+a3-a4+…+a9-a10=$\frac{{9}^{10}-1}{2}-\frac{{9}^{10}+1}{2}+{4}^{10}={4}^{10}-1$.
故答案为:410-1.
点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com