精英家教网 > 高中数学 > 题目详情
5.已知a∈R,复数i2-ai在复平面内对应的点在直线x-y=0上,则实数a的值是(  )
A.1B.0C.-1D.2

分析 化简复数,求出对应点,代入直线方程求解即可.

解答 解:复数i2-ai=-1-ai,复数在复平面内对应的点在直线x-y=0上,
可得-1+a=0,
解得a=1.
故选:A.

点评 本题考查复数的基本运算,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点是P(0,-1),且离心率为$\frac{\sqrt{3}}{2}$.圆C2:x2+y2=4,l1,l2是过点P且互相垂直的两条直线,其中直线l1交圆C2于A,B两点,直线l2与椭圆C1的另一交点为D.
(Ⅰ)求椭圆C1的标准方程;
(Ⅱ)求△ABD面积的最大值及取得最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的短轴长为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0,x∈R)的最小正周期为π.
(1)求ω的值;
(2)在给定的平面直角坐标系中,画出函数f(x)在区间[0,π]上的图象;
(3)求函数f(x)的最大值,并写出使函数f(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在线段AM上,点N在CM上,且满足$\overrightarrow{AM}$=2$\overrightarrow{AP}$,$\overrightarrow{NP}$•$\overrightarrow{AM}$=0,点N的轨迹为曲线E.求曲线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若实数x,y满足$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{x≥0}\end{array}\right.$,则z=2x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{m}$=(3cosx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(2cosx,-2cosx),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$
(1)求f(x)的最小正周期和单调减区间
(2)在△ABC中,锐角B满足f(B)=0,b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(-3,4),$\overrightarrow{c}$=(-x,-4),若向量2$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{c}$平行,则实数x等于(  )
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,
(1)求证:平面ADE⊥平面BCE;
(2)求点D到平面AEC的距离;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

同步练习册答案