精英家教网 > 高中数学 > 题目详情
10.若实数x,y满足$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{x≥0}\end{array}\right.$,则z=2x+y的最大值为3.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点B时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x+y-2=0}\\{x-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即B(1,1),
代入目标函数z=2x+y得z=2+1=3.
即目标函数z=2x+y的最大值为3.
故答案为:3

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知圆C:x2+y2-2x-5y+4=0,以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为y2-$\frac{{x}^{2}}{15}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=lnx图象在点(x0,f(x0))处的切线经过(0,1)点,则x0的值为e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线x2-$\frac{{y}^{2}}{4}$=1的渐近线与圆(x-a)2+y2=4(a>0)相切,则a=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a∈R,复数i2-ai在复平面内对应的点在直线x-y=0上,则实数a的值是(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校高三文,理各两个班在11月份进行了一次质量考试,考生成绩情况如下表所示:已知用分层抽样方法在分数[400,480)的考生中随机抽取27名考生进行质量分析,其中文科考生抽取了7名.(1)求a的值(2)如图是文科不低于550分的5名考生的语文成绩(其中语文满分为150分)的茎叶图,请计算这5名考生的语文成绩的方差;(3)在成绩不低于550分的所有考生中抽取2名进行治疗分析,求至少抽到一名理科生的概率.
 [0,400][400,480][480,550][550,750]
文科考生6735195
理科考生53a412

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点坐标分别为F1,F2,以|F1F2|为直径的圆与双曲线渐近线的一个交点为(1,2),则此双曲线的标准方程是x2-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知空间几何体的正视图,侧视图都是边长为1的正方形,而俯视图是一个圆,则这一几何体的体积为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正方体ABCD-A1B1C1D1的棱长为1,E,F分别是边AA1,CC1的中点,点M是BB1上的动点,过点E,M,F的平面与棱DD1交于点N,设BM=x,平行四边形EMFN的面积为S,设y=S2,则y关于x的函数y=f(x)的解析式为(  )
A.$f(x)=2{x^2}-2x+\frac{3}{2}$,x∈[0,1]
B.$f(x)=\left\{\begin{array}{l}\frac{3}{2}-x,x∈[0\;,\;\frac{1}{2})\\ x+\frac{1}{2},x∈[\frac{1}{2}\;,\;1].\end{array}\right.$
C.$f(x)=\left\{\begin{array}{l}-2{x^2}+\frac{3}{2},x∈[0\;,\;\frac{1}{2}]\\-2{(x-1)^2}+\frac{3}{2},x∈(\frac{1}{2}\;,\;1].\end{array}\right.$
D.$f(x)=-2{x^2}+2x+\frac{3}{2}$,x∈[0,1]

查看答案和解析>>

同步练习册答案