精英家教网 > 高中数学 > 题目详情
20.已知正方体ABCD-A1B1C1D1的棱长为1,E,F分别是边AA1,CC1的中点,点M是BB1上的动点,过点E,M,F的平面与棱DD1交于点N,设BM=x,平行四边形EMFN的面积为S,设y=S2,则y关于x的函数y=f(x)的解析式为(  )
A.$f(x)=2{x^2}-2x+\frac{3}{2}$,x∈[0,1]
B.$f(x)=\left\{\begin{array}{l}\frac{3}{2}-x,x∈[0\;,\;\frac{1}{2})\\ x+\frac{1}{2},x∈[\frac{1}{2}\;,\;1].\end{array}\right.$
C.$f(x)=\left\{\begin{array}{l}-2{x^2}+\frac{3}{2},x∈[0\;,\;\frac{1}{2}]\\-2{(x-1)^2}+\frac{3}{2},x∈(\frac{1}{2}\;,\;1].\end{array}\right.$
D.$f(x)=-2{x^2}+2x+\frac{3}{2}$,x∈[0,1]

分析 根据正方体的对称知道四边形MENF是一个菱形,所以它的面积为两对角积的一半,又知一对角线EF的长等于正方体的面对角线,另一条可以构造直角三角形,用勾股定理可以用x表示出来,从而求出f(x)的表达式.

解答 解:由对称性易知四边形MENF为菱形,
∴${S}_{四边形EMFN}=\frac{1}{2}MN•EF$
∵EF=$\sqrt{2}$,MN=2$\sqrt{(\frac{1}{2}-x)^{2}+(\frac{\sqrt{2}}{2})^{2}}=2\sqrt{(x-\frac{1}{2})^{2}+\frac{1}{2}}$,
∴${S}_{MENF}=\sqrt{2}•\sqrt{(x-\frac{1}{2})^{2}+\frac{1}{2}}$
∴f(x)=2x2-2x+$\frac{3}{2}$,
故选:A.

点评 本题建立S与x的关系式是关键,在空间中求线段的长,构造直角三角形是常用的思路.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若实数x,y满足$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{x≥0}\end{array}\right.$,则z=2x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知空间几何体的正视图,侧视图都是边长为1,且一个内角为60°的菱形,而俯视图是个圆,则这一几何体的体积为$\frac{\sqrt{3}}{12}$π或$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设复数z满足z•(1-i)=2,则复数z的模|z|等于(  )
A.1B.4C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,
(1)求证:平面ADE⊥平面BCE;
(2)求点D到平面AEC的距离;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}的通项公式an=3n,其前n项和为Sn,则数列{$\frac{1}{{S}_{n}}$}的前100项和为(  )
A.$\frac{33}{50}$B.$\frac{2}{3}$C.$\frac{200}{303}$D.$\frac{31}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知∠ACB=90°,∠ACB所在平面外有一点P,PC=24cm,点P到∠ACB两边的距离均为6$\sqrt{10}$cm,求PC与平面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在容量是40的样本中 各数与30的差的平方和是250.样本的标准差是1.5,则这个样本的平均数为32或28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过定点P(0,2)作直线l,使l与曲线y2=4x有且仅有1个公共点,这样的直线l共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

同步练习册答案